Journals →  Gornyi Zhurnal →  2023 →  #5 →  Back

ArticleName Integrated stress–strain analysis of pillars in apatite–nepheline ore mining by sublevel caving
DOI 10.17580/gzh.2023.05.12
ArticleAuthor Vilner M. A., Streshnev A. A., Onuprienko V. S.

Research Center for Geomechanics and Mining Practice Problems, Saint-Petersburg Mining University, Saint-Petersburg, Russia:

M. A. Vilner, Researcher, Candidate of Engineering Sciences,


Apatit’s Division in Kirovsk, Kirovsk, Russia:
A. A. Streshnev, Head of Rockburst Prediction and Prevention Service
V. S. Onuprienko, Chief Engineer


A pillar established between drilling-and-haulage drifts is one of the key elements in sublevel caving system. The currently common procedure of determining such pillar parameters is the collation of the load-bearing capacity of the pillar with the effective stresses. This procedure omits many factors intrinsic to apatite–nepheline ore deposits. The pillar stability maintenance via the integrated stress–strain behavior prediction ensures safety of mining operationы and reduces the need of re-installation of support systems in underground openings, which directly influences mining efficiency. The authors infer on the main disadvantages of the current approaches to stability estimation of rock pillars in apatite–nepheline ore mining. It is found that rock pillar stability at such deposits should be considered as local and global stability. The local stability is inspected visually by observations over geomechanical processes in the adjacent rock mass of the pillars. A possible loss of the global stability should be substantiated by instrumental observations or modeling. The implemented numerical modeling allows drawing a conclusion that the stress state of pillars is mostly affected by: the stress state of the adjacent rock mass of a pillar before it is drilled around and at the stage of enveloping the pillar with stopes; the rock strength; the pillar geometry (shape and dimension); the position and advance direction of the stoping operations relative to the pillar. The numerical modeling provided the stress–strain analysis of pillars with regard to the weightiest factors—tectonic stresses, higher-level stoping and pillar geometry. The accomplished research revealed stress–strain patterns in pillars, and made it possible to offer recommendations on optimization of pillar parameters.

keywords Stress–strain behavior, apatite–nepheline ore, pillar, sublevel caving, numerical modeling

1. Rusin E. P., Stazhevskiy S. B. Swedish version of sublevel caving ore mining system: State-of-the-art and prospects. Interexpo GEO-Sibir. 2017. Vol. 2, No. 2. pp. 112–116.
2. Belogorodtsev O. V., Gromov E. V., Melnik V. B. Justification of mining methods and their design parameters under production intensification conditions when developing reserves at deep horizons of thick ore deposits. GIAB. 2016. No. 4. pp. 122–130.
3. Hedley D. G. F, Grant F. Stope-and-Pillar Design for the Elliot Lake Uranium Mines. CIM Bulletin. 1972. Vol. 65. pp. 37–44.
4. Guidelines for safe mining under conditions of rockburst hazard (Khibiny apatite–nepheline deposits). Kirovsk, 2021.
5. Kozyrev A. A., Savchenko S. N., Panin V. I., Semenova I. E., Rybin V. V. et al. Geomechanical processes in the geological environment of geotechnical systems and geodynamic risk management. Apatity : KNTs RAN, 2019. 431 p.
6. Sidorov D. V. Ponomarenko T. V. Feasibility study of optimal parameters of pillars in designing rockburst-hazardous ore deposits development. Journal of Mining Institute. 2012. Vol. 198. pp. 11–15.
7. Kuranov A. D., Bagautdinov I. I., Kotikov D. A., Zuev B. Yu. Integrated approach to safety pillar stability in slice mining in the Yakovlevo deposit. Gornyi Zhurnal. 2020. No. 1. pp. 115–119. DOI: 10.17580/gzh.2020.01.23
8. Ulusay R., Hudson J. A. The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974–2006. Ankara, 2007. 628 p.
9. Barton N., Shen B. Risk of shear failure and extensional failure around over-stressed excavations in brittle rock. Journal of Rock Mechanics and Geotechnical Engineering. 2017. Vol. 9, Iss. 2. pp. 210–225.
10. Martini C. D., Read R. S., Martino J. B. Observations of brittle failure around a circular test tunnel. International Journal Rock Mechanics and Mining Science. 1997. Vol. 34, Iss. 7. pp. 1065–1073.
11. Korchak P. A., Karasev M. A. Geomechanical prediction of the brittle fracture zones in rocks in the vicinity of the excavation junction of Ltd “Apatit” mines. Ustoychivoe razvitie gornykh territoriy. 2023. Vol. 15, No. 1(55). pp. 67–80.
12. Rasskazov I. Yu., Saksin B. G., Anikin P. A., Potapchuk M. I., Gladyr A. V. et al. Methods and results of burst-hazard assessment in the undeground mines of Russian Far East. Rockbursts and Seismicit y in Mines : Proceeding of the 8th International Symposium. Obninsk : Geophysical Survey of Russian Academy of Sciences, 2013. pp. 319–322.
13. Shabarov A., Kur anov A., Popov A., Tsirel S. Geodynamic risks of mining in highly stressed rock mass. Problems in Geomechanics of Highly Compressed Rock and Rock Masses : Proceedings of the 1st International Scientific Conference. 2019. E3S Web of Conferences. 2019. Vol. 129. 01011. DOI: 10.1051/e3sconf/201912901011
14. Bagautdinov I., Kuranov A., Belyakov N., Streshnev A. The reasoning of mining methods parameters toward development of the apatite-nepheline ore deposits based on results of forecast of massif stress state. Problems of Complex Development of Georesources : Proceedings of VII International Scientific Conference. 2018. E3S Web of Conferences. 2018. Vol. 56. 01 019. DOI: 10.1051/e3sconf/20185601019
15. Sjoeberg J. Failure modes and pillar behaviour in the Zinkgruvan mine. Rock Mechanics : Proceedings of the 33rd U.S. Symposium. Rotterdam : A. A. Balkema, 1992. pp. 491–500.
16. Petrov D. N. In-situ monitoring of support systems at junctions of horizontal galleries in weak ore mines. Journal of Mining Institute. 2007. Vol. 172. pp. 66–68.
17. Sinegubov V. Yu., Popov M. G., Vilner M. A., Sotnikov R. O. Influence of stoping on formation of damaged rock zones at boundaries of large cross-section excavations in apatite–nepheline mining. Gornyi Zhurnal. 2021. No. 8. pp. 26–30. DOI: 10.17580/gzh.2021.08.04
18. Rozenbaum M. A., Chernyakhovskii S. M., Savchenko E. S. Investigation of exfoliation height of roof rocks in mine workings within the zone of bearing pressure. Journal of Mining Institute. 2011. Vol. 190. pp. 210–213.
19. Shabarov A. N., Kuranov A. D., Kiselev V. A. Assessing the zones of tectonic fault influence on dynamic rock pressure manifestation at Khibiny deposits of apatite-nepheline ores. Eurasian Mining. 2021. No. 2. pp. 3–7. DOI: 10.17580/em.2021.02.01
20. Zhukova S. A., Zhuravleva O. G., Onuprienko V. S., Streshnev A. A. Seismic behavior of rock mass in mining rockburst-hazardous deposits in the Khibiny Massif. GIAB. 2022. No. 7. pp. 5–17.
21. Lunder P. J., Pakalnis R. C. Determination of the Strength of Hard-Rock Mine Pillars. CIM Bulletin. 1997. Vol. 90, No. 1013. pp. 51–55.
22. Gospodarikov A. P., Morozov K. V., Revin I. E. A method of data interpretation in seismicity and deformation monitoring in underground mining in terms of the Kukisvumchorr deposit of Apatit company. GIAB. 2019. No. 8. pp. 157–168.
23. Sidorov D. V., Potapchuk M. I., Sidlyar A. V. Forecasting rock burst hazard of tec tonically disturbed ore massif at the deep horizons of Nikolaevskoe polymetallic deposit. Journal of Mining Institute. 2018. Vol. 234. pp. 604–611.
24. Gospodarikov A. P., Trofimov A. V., Kirkin A. P. Evaluation of deformation characteristics of brittle rocks beyond the limit of strength in the mode of uniaxial servohydraulic loading. Journal of Mining Institute. 2022. Vol. 256. pp. 539–548.
25. Lomov M. A., Konstantinov A. V., Tereshkin A. A. Prospective methods of assessment and control of the geomechanical state of rock masses. Problemy nedropolzovaniya. 2019. No. 4(23). pp. 83–90.
26. Potvin Y., Hadjigeorgiou J. Ground support strategies to control large deformations in mining excavations. Ground Support in Mining and Civil Engineering Construction : Proceedings of the 6th International Symposium on Ground Support. Cape Town, 2008. pp. 545–560.
27. Gospodarikov A. P., Zatsepin M. A. Mathematical modeling of boundary problems in geomechanics. Gornyi Zhurnal. 2019. No. 12. pp. 16–20. DOI: 10.17580/gzh.2019.12.03
28. Krauland N., Soder P.-E. Determining pillar strength from pillar failure observations. Engineering & Mining Journal. 1987. Vol. 8. pp. 34–40.
29. Ignatiev S. A., Sudarikov A. E., Imashev A. Zh. Modern Mathematical Forecast Methods of Maintenance and Support Conditions for Mining Tunnels. Journal of Mining Institute. 2019. Vol. 238. pp. 371–375.
30. Pierotti A., Leoni M., Lo Presti D. 3D FEM and DEM Analyses of Underground Openings in Competent Rock Masses. Advancements in Civil Engineering & Technology. 2020. Vol. 4, Iss. 3. ACET.000588. DOI: 10.31031/ACET.2020.04.000588
31. Von Kimmelmann M. R., Hyde B., Madgwick R. J. The use of computer applications at BCL Limited in planning pillar extraction and design of mining layouts. Design and Performance of Underground Excavations : Proceedings of ISRM Symposium. London : British Geotechnical Society, 1984. pp. 53–63.
32. Trushko V. L., Protosenya A. G. Prospects of geomechanics development in the context of new technological paradigm. Journal of Mining Institute. 2019. Vol. 236. pp. 162–166.
33. Zhang Y., Mitri H. S. Stability assessment of non-entry stopes using nonlinear finite element analysis. Rock Mechanics: Meeting Society’s Challenges and Demands : Proceedings of the 1st Canada-US Rock Mechanics Symposium. London : CRC Press, 2007. Vol. 2. pp. 1347–1351.
34. Zuev B. Yu. Methodology of modeling nonlinear geomechanical processes in blocky and layered rock masses on models made of equivalent materials. Journal of Mining Institute. 2021. Vol. 250. pp. 542–552.
35. Bieniawski Z. T. Engineering Rock Mass Classifications: A Complete Manual for Engineers and Geologists in Mining, Civil and Petroleum Engineering. New York : John Wiley & Sons, 1989. 251 p.

Full content Integrated stress–strain analysis of pillars in apatite–nepheline ore mining by sublevel caving