Journals →  Gornyi Zhurnal →  2023 →  #6 →  Back

ArticleName Mineralogy and petrography of Silurian deposits at the Western Mugodzhar Mountains
DOI 10.17580/gzh.2023.06.08
ArticleAuthor Mynbaev M. B., Kryazheva T. V., Dosetova G. Zh., Portnov V. S.

Abylkas Saginov Karaganda Technical University, Karaganda, Republic of Kazakhstan:

M. B. Mynbaev, Doctoral Student
T. V. Kryazheva, Associate Professor, Candidate of Geological and Mineralogical Sciences,
V. S. Portnov, Professor, Doctor of Engineering Sciences


Zhezkazgan Baikonurov University, Zhezkazgan, Republic of Kazakhstan:

G. Zh. Dosetova, Doctoral Student


The authors investigated mineralogy and petrography of the Devonian volcanic formations in the Zhaksytau caldera in the Western Mugodzhar Mountains with a view to assessing probable ore content of the area. Amongst the volcanic rocks of the caldera, the Mugodzhary series is best developed and composes the uplands of the Mugodzhar Mountains. The relevance of the research is governed by the need to have new data on the formation conditions of pyrite gold and polymetallic mineralization in the late ensimatic island arcs. The basis of the research is the analysis of the material constitution of the volcanic formations. The test area is a part of the south extension of the Tagil–Magnitogorsk depression in the Southern Ural. The petrographic compositions and structures of the Mugodzhary formation rocks are described. Pillow lavas of various morphology types occupy substantial volumes in the Silurian and Devonian cross-section of the Western Mugodzhary, and mostly adjoin certain sites in the cross-section. The composition of magma, which generated the pillow lavas, gradually changed with time from plateau-basalt in the Silurian Period and from andesite–basalt to andesite in the Devonian Period. Different zones of the same lava pillow have different chemistries. The degree of albitization of the pillow lavas is directly proportional to the degree of decrystallization of rocks and, probably, is independent of the formation conditions of the pillow lavas. The pillow lavas contain much more metals than the overburden of the same composition. The pillow lavas should be considered as the favorable host environment for the Cyprus-type pyrite–copper mineralization.

keywords Basalt lava, gabbro-dolerite, dolerite, volcano-tectonic depression, caldera, pyritic copper mineralization.

1. Koroteev V. A., Ogorodnikov V. N., Sazonov V. N., Polenov Yu. A. Minerageny of the suture zone of the Urals. Yekaterinburg : UrO RAN, 2010. 416 p.
2. Salikhov D. N., Kholodnov V. V., Puchkov V. N., Rakhimov I. R. Magnitogorsk zone of the Southern Ural in the Late Paleozoic : Magmatism, fluid regime, metallogeny, geodynamics. Moscow : Nauka, 2019. 391 p.
3. Gaskov I. V. Specific features of pyrite ore-magmatic systems development in the island arc environments of Rudny Altai and Southern Urals. Litosfera. 2015. No. 2. pp. 17–39.
4. Maslov A. V., Podkovyrov V. N. Syn-rift sedimentation associations. Some lithochemical sketches. Yekaterinburg : IGG UrO RAN, 2020. 172 p.
5. Mineralienatlas—Fossilienatlas. Available at: (accessed: 15.12.2022).
6. Mynbaev M., Portnov V., Kryazheva T., Reva N., Bakyt A. Ore mineralization of the volcanogenic strata of the rocks of the Zhaksytao caldera. Trudy universiteta. 2022. No. 2(87). pp. 75–83.
7. Mynbaev M. B., Portnov V. S., Kryazheva T. V., Reva N. V., Bakyt A. Mineral and Petrographic Characteristics Rocks of Pyrite Mineralization of the Ural Type. Trudy universiteta. 2022. No. 1(86). pp. 67–75.
8. Borovikov A. A., Bulbak T. A., Borisenko A. S., Ragozin A. L., Palesskii S. V. The behavior of ore elements in oxidized heterophase chloride and carbonate–chloride–sulfate fluids of porphyry Cu–Mo(Au) deposits (from experimental data). Russian Geology and Geophysics. 2015. Vol. 56, No. 3. pp. 435–445.
9. Grabezhev A. I., Voronina L. K. Sulfur in apatite from copper–porphyry rock systems in the Urals. Yearbook-2011 : Transactions of the Institute of Geology and Geochemistry UB RAS. Yekaterinburg : Institut geologii i geokhimii im. akademika A. N. Zavaritskogo, 2012. Vol. 159. pp. 68–70.
10. Zhong-Jie Bai, Zhong, Hong Zhong, Rui-Zhong Hu, Wei-Guang Zhu. Early sulfide saturation in arc volcanic rocks of southeast China: Implications for the formation of co-magmatic porphyry–epith ermal Cu–Au deposits. Geochimica et Cosmochimica Acta. 2020. Vol. 280. pp. 66–84.
11. Zhong-Yu Zhang, Yin-Hong Wang, Jia-Jun Liu, Shan-Yuan Lin, Fang-Fang Zhang et al. Sulfur isotope, fluid inclusions, and quartz solubility model decipher multistage hydrothermal fluids evolution and ore precipitat ion mechanism at the Nantai porphyry Mo deposit, Qinling, Central China. Chemical Geology. 2023. Vol. 627. 121273. DOI: 10.1016/j.chemgeo.2022.121273
12. Bing Xiao, Huayong Chen. Elemental behavior during chlorite alteration: New insights from a combined EMPA and LA-ICPMS study in porphyry Cu systems. Chemical Geology. 2020. Vol. 543. 119604. DOI: 10.1016/j.chemgeo.2020.119604
13. Fershtater G. B. Magmatism in the Epochs of Ural Paleocean Closure and Mobile Belt Development: Composition, Distinctive Evolutionary Features, and Sources. Petrology. 2013. Vol. 21, No. 2. pp. 181–202.
14. Yurish V. V., Knizhnik K. E., Kazybaev Zh. S., Kashirina N. A. The Mugodzhary copper–pyrite province (Kazakh Ural). Some Ore Provinces in Kazakhstan : Conference–Workshop Proceedings. Almaty, 2013. pp. 75–85.
15. Ernst R. E. Large Igneous Provinces. London : Саmdridge University Press, 2014. 653 p.
16. Dyachkov B. A., Bissatova A. Y., Mizernaya M. A., Khromykh S. V., Oitseva T. A. et al. Mineralogical Tracers of Gold and Rare-Metal Mineralization in Eastern Kazakhstan. Minerals. 2021. Vol. 11, Iss. 3. 253. DOI: 10.3390/min11030253
17. Mizernaya M. A., Dyachkov B. A., Pyatkova A. P., Miroshnikova A. P., Chernenko Z. I. Leading genetic types of base metal deposits of Rudny Altai. Nauchnyi vestnik Natsionalnogo gornogo universiteta. 2021. No. 2. pp. 11–16.
18. Rooney T. O., Mohr P. A., Dosso L., Hall C. Geochemical evidence of mantle reservoir evolution during progressive rifting along the western Afar margin. Geochimica et Cosmochimica Acta. 20 13. Vol. 102. pp. 65–88.

Language of full-text russian
Full content Buy