Журналы →  Обогащение руд →  2023 →  №3 →  Назад

ОБОРУДОВАНИЕ
Название К выбору конструкции аппарата для механоактивации и оттирки минеральных зернистых сред
DOI 10.17580/or.2023.03.08
Автор Сизиков В. С., Сизиков С. А.
Информация об авторе

Институт проблем машиноведения РАН, Санкт-Петербург, РФ:

Сизиков В. С., научный сотрудник, канд. техн. наук, sizikovvs@yandex.ru

 

НИПКБ «Стройтехника», Санкт-Петербург, РФ:

Сизиков С. А., генеральный директор, канд. техн. наук, доцент, sizikovsa@rambler.ru

Реферат

Выполнен аналитический обзор эффективности работы современного оборудования для оттирки и механоактивации зернистых минеральных материалов. Выявлены его основные недостатки, такие как: избыточное измельчение, повышенное энергопотребление, недостаточная управляемость процессом силового воздействия на слой материала. Предлагается динамическая схема аппарата для оттирки и механоактивации зернистых сред, позволяющая устранить указанные недостатки за счет воздействия на напряженный слой среды вибрирующими стенками с возможностью регулирования напряжений в слое частотой, амплитудой вынуждающей силы и степенью заполнения материалом рабочей камеры.

Работа выполнена в рамках государственного задания Министерства науки и высшего образования Российской Федерации (тема № 121112500313-6).

Ключевые слова Механическая активация, оттирка, метод виброобъемного воздействия, микроповерхностный слой, зернистая среда, противофазные колебания, синхронизация, рабочая камера
Библиографический список

1. Kukushkin S. A., Osipov A. V. Phase transitions and the nucleation of catalytic nanostructures under the action of chemical, physical, and mechanical factors. Kinetika i Kataliz. 2008. Vol. 49, No. 1. pp. 85–98.
2. Freidin A. B. On configurational forces in the mechanics of phase and chemical transformations. Mechanics of Solids. 2022. Vol. 57, Iss. 8. pp. 2020–2029.
3. Sundurov A. V., Dubovikov O. A., Ustinov I. D. Application of generator gas for tubular rotary kilns for thermal activation of materials in alumina production. Nanophysics and nanomaterials: collection of scientific papers of the International seminar. St. Petersburg, 2020. pp. 354–356.

4. Reference book on beneficiation of ores. Vol. 3. Special and auxiliary processes, washability tests, control and automation. Ed. O. S. Bogdanov, V. I. Revnivtsev. 2nd ed. Moscow: Nedra, 1983. 376 p.
5. Molchanov V. I., Selezneva O. G., Zhirnov E. N. Activation of minerals during grinding. Moscow: Nedra, 1988. 208 p.
6. New handbook of chemist and technologist: Processes and apparatus of chemical technologies. Ed. G. M. Ostrovsky. St. Petersburg: Professional, 2004. Pt. 1. 848 p.
7. Agranat B. A. Fundamentals of physics and ultrasound technology. Moscow: Higher School, 1987. 352 p.
8. Samoilik V. G. Special and combined methods of mineral beneficiation. Donetsk: Skhidny Vidavnichy Dim, 2015. 165 p.
9. Seryi R. S., Nechaev V. V. On the need for an integrated approach to solving the problem of disintegration of hard-to-wash placer sands. Gornyi Informatsionno-analiticheskiy Byulleten'. 2009. Vol. 4, No. 12. pp. 268–274.
10. Avvakumov E. G. Mechanical methods of activation of chemical processes. Novosibirsk: Nauka, 1989. 306 p.
11. Boldyrev V. V. Experimental methods in mechanochemistry of solid inorganic substances. Novosibirsk: Nauka, 1983. 65 p.
12. Stepanenko A. I., Stepanenko A. A. Beneficiation of glass sands. Novosibirsk: Gormashexport, 2019. 46 p.
13. Rebinder P. A. Surface phenomena in dispersed systems. Physico-chemical mechanics. Selected works. Moscow: Nauka, 1979. 384 с.
14. GOST 26633-2015. Heavy-weight and sand concretes. Specifications. Moscow: Standartinform, 2019. 11 p.
15. Czapla P., Dańko R. The state of art of the mechanical reclamation of used foundry sands. Archives of Foundry Engineering. 2013. Vol. 13, Iss. 3 (Special). pp. 15–20.
16. Eliseeva М. A. Experience and prospects of application of mechanical activations in the technology of concretes production. Molodyi Uchenyi. 2015. No. 6. pp. 23–26.
17. Arsentiev V. A., Bilenko L. F., Vaisberg L. A. Mechanical activation of mineral-organic powders in a vibrating mill. Obogashchenie Rud. 2006. No. 5. pp. 3–6.
18. Kuzmina V. P. Vibration-centric mills for mechanical activation of CCC intermediates. Stroitelnye Materialy. 2007. No. 5. pp. 82–85.
19. Geng Yao, Qiang Wang, Zhiming Wang, Junxiang Wang, Xianjun Lyu. Activation of hydration properties of iron ore tailings and their application as supplementary cementitious materials in cement. Powder Technology. 2020. Vol. 360. pp. 863–871.
20. Vaisberg L. A., Zarogatsky L. P., Turkin V. Ya. Vibrating crushers: fundamentals of calculation, design and technological application. St. Petersburg: VSEGEI, 2004. 305 p.
21. Lesin A. D. Elements of the theory and methodology for calculating the main parameters of vibrating mills. Vibratsionnoye Izmelchenie Materialov: Nauchnoye Soobshchenie. 1957. No. 25. 114 p.
22. Vibrating ball mills MV. Technical characteristics. URL: https://www.consit.ru/dlya-izmelcheniya-i-drobleniya/melnitsy-vibratsionnye-mv#tekhnicheskaya-kharakteristika (accessed: 25.05.2023).
23. Blekhman I. I. Vibrational mechanics and vibrational rheology. Moscow: Fizmatlit, 2018. 752 p.
24. Vibrating ball mills MV. Table of results of grinding tests (for non-food materials). URL: https://www.consit.ru/images/docum/tabliza/tabl_8.pdf (accessed: 25.05.2023).
25. GOST 22551-77. Quartz sand, ground sandstone, quartzite and veiny quartz for glass industry. Specifications. Мoscow: Standards Publishing House, 1997. 16 p.
26. Sablin R. A. Experimental studies of operation mode vibratory jaw crusher crushing chamber incline. Gornyi Informatsionno-analiticheskiy Byulleten'. 2014. No. 1. pp. 406–409.
27. Shishkin E. V., Kazakov S. V. Energy-efficient equipment for disintegration of extremely strong materials. Gornyi Zhurnal. 2021. No. 11. pp. 53–49.
28. Shishkin E. V., Kazakov S. V. Vibration cone crusher for disintegration of solid materials. IOP Conference Series: Earth and Environmental Science. 2018. Vol. 194, Iss 3. DOI: 10.1088/1755-1315/194/3/032027
29. Shishkin E. V., Kazakov S. V. Vibratory crusher forced oscillations in resonance frequency range. Obogashchenie Rud. 2015. No. 5. pp. 42–45.
30. Tyagushev S. Yu. Increasing the productivity of a vibrating jaw crusher based on the stabilization of synchronous-antiphase oscillations by means of an automated electric drive: abstract of the diss. for the degree of Candidate of Engineering Sciences. St. Petersburg, St. Petersburg State Mining Institute named after G. V. Plekhanov, 2010. 20 p.
31. Zimin M. A., Panfilov F. V., Matrosov A. A., Afonin I. A. Guidelines for the beneficiation of screenings of crushing and different-strength stone materials. Moscow: SoyuzDorNII, 1992. 66 p.
32. Pat. 2514054 Russian Federation.
33. Preston М., Tatarzyn J. Optimizing plant efficiency with attrition scrubbers. Mining Engineering. 2013. Vol. 65, Iss. 10. pp. 24–24.
34. Horizontal scrubbing machine. URL: https://sibtehlit.ru/oborudovanie-regeneraczii-otrabotannyix-smesej-xtsgorizontalnaya-ottirochnaya-mashina (accessed: 24.05.2023).
35. Serebryakov S. P., Popkov K. N., Rogova N. A., Shestkov D. S. Centrifugally-bladed machine employment for sand-liquid glass mixes regeneration. Vestnik Rybinskogo Gosudarstvennogo Aviatsionnogo Tekhnicheskogo Universiteta imeni P. A. Solov'eva. 2017. No. 4. pp. 158–162.
36. Pat. 2675554 Russian Federation.
37. Sizikov V. S. Vibration enrichment of fine concrete aggregatesby the attrition and mechanical activation techniques. Vestnik Grazhdanskikh Inzhenerov. 2015. No. 6. pp. 205–210.
38. Sizikov V. S., Evtyukov S. A. Rational regimes of fine concrete aggregate enrichment using the method of volumetric vibrational impact. Vestnik Grazhdanskikh Inzhenerov. 2018. No. 6. pp. 156–162.
39. Tomchina O. P. Control of oscillations in two-rotor cyberphysical vibration units with time-varying observer. Cybernetics and Physics. 2020. Vol. 9, Iss. 4. pp. 206–213.
40. Shagniev O. B., Tomchina O. P., Fradkov A. L. Learning speed-gradient synchronization control of the tworotor vibration setup. IFAC–PapersOnLine. 2022. Vol. 55, Iss. 12. pp. 144–148.

Language of full-text русский
Полный текст статьи Получить
Назад