Название |
Corrosion
behavior of steel 08Yu in simulated service solution of heating systems |
Информация об авторе |
National University of Science and Technology MISIS, Moscow, Russia:
A. G. Rakoch, Dr. Chem., Prof., Dept. of Steel Metallurgy, New Production Technologies and Metal Protection, e-mail: rakoch@mail.ru
O. V. Volkova, Cand. Eng., Senior Lecturer, Dept. of Steel Metallurgy, New Production Technologies and Metal Protection
JSC RIFAR, Gay, Russia: A. A. Lobach, Cand. Eng., Innovation Director
V. V. Begnarsky, Cand. Eng., Deputy Director for Scientific and Technical Development
Certification Center, Moscow, Russia: E. P. Monakhova, Cand. Eng., Chief Specialist in Corrosion Protection, e-mail: evmo444@ya.ru
Baikov Institute of Metallurgy and Materials Science, RAS, Moscow, Russia: M. V. Zhelezny, Junior Researcher |
Библиографический список |
1. Shahzad K., Sliem M. H., Shakoor R. A., Radwan A. B. et al. Electrochemical and thermodynamic study on the corrosion performance of API X120 steel in 3.5% NaCl solution. Scientific reports. 2020. Vol. 10. No. 1. 4314. 2. Katiyar P. K., Misra S., Mondal K. Corrosion behavior of annealed steels with different carbon contents (0.002, 0.17, 0.43 and 0.7% C) in freely aerated 3.5% NaCl solution. Journal of Materials Engineering and Performance. 2019. Vol. 28. pp. 4041–4052. 3. Suleiman R. K., Kumar A. M., Adesina A. Y., Al-Badour F. A. et al. Hybrid organosilicon-metal oxide composites and their corrosion protection performance for mild steel in 3.5 % NaCl solution. Corrosion Science. 2020. Vol. 169. 108637. 4. Osório W. R., Peixoto L. C., Garcia L. R., Garcia A. Electrochemical corrosion response of a low carbon heat treated steel in a NaCl solution. Materials and Corrosion. 2009. Vol. 60. No. 10. pp. 804–812. 5. Zeng Y., Kang L., Wu Y., Wan S. et al. Melamine modified carbon dots as high effective corrosion inhibitor for Q235 carbon steel in neutral 3.5 wt% NaCl solution. Journal of Molecular Liquids. 2022. Vol. 349. 118108. 6. Tristijanto H., Ilman M. N., Iswanto P. T. Corrosion inhibition of welded of X–52 steel pipelines by sodium molybdate in 3.5% NaCl solution. Egyptian Journal of Petroleum. 2020. Vol. 29. No. 2. pp. 155–162. 7. Rodionova I. G., Amezhnov А. V., Zarkova Е. I., Iremashvili V. I. Improvement of the corrosion resistance of steels intended for operation in sea water. Problemy Chernoy Metallurgii i Materialovedeniya. 2019. No. 3. pp. 59–65. 8. Rodionova I. G., Amezhnov А. V., Zaytsev А. I., Mogutnov B. М., Baklanova О. N. Corrosion resistance of non-alloyed and low-alloyed steels in neutral aqueous media. Moscow : Metallurgizdat, 2021. 388 p. 9. Bates A. J., Bignold G. J., Garbett K., Woolsey I. S. et al. The central electricity generating board single-phase erosion-corrosion research programme. Nuclear Energy. 1986. Vol. 25. pp. 361–370. 10. Tremaine R. P., LeBlanc J. C. The solubility of magnetite and the hydrolysis and oxidation of Fe2+ in water to 300 °С. Journal of Solution Chemistry. 1980. Vol. 9. pp. 415–442. 11. Remy F. N., Bouchacourt M. Flow-assisted corrosion: a method to avoid damage. Nuclear Engineering and Design. 1992. Vol. 133. pp. 23–30. 12. Fujiwara K., Domae M., Ohira T., Hisamune K. et al. Electrochemical measurements of carbon steel under high flow rate condition and thermodynamic solubility of iron. Proceedings of the 16th Pacific Basin Nuclear Conference (Aomori, Japan, Atomic Energy Society of Japan). 2008. 1048 p. 13. Bouvier O., Bouchacourt M., Fruzzetti K. Redox conditions effect on flow accelerated corrosion: influence of hydrazine and oxygen. Proceedings of the International Conference on Water Chemistry of Nuclear Reactor Systems, Avignon, France. April, 2002. No. 117. pp. 22–26. 14. Fujiwara K., Domae M., Yoneda K., Inada F. Model of physico-chemical effect on flow accelerated corrosion in power plant. Corrosion Science. 2011. Vol. 53. pp. 3526–3533. 15. Satoh T., Shao Y., Cook W. G., Lister D. H., Uchida S. Flow-assisted corrosion of carbon steel under neutral water conditions. Corrosion. 2007. Vol. 63. pp. 770–780. 16. Ahmed W. H., Bello M. M., Nakla M. E., Sarkhi A. A., Badr H. M. Experimental investigation of flow accelerated corrosion under two-phase flow conditions. Nuclear Engineering and Design. 2014. Vol. 267. pp. 34–43. 17. Rani H. P., Divya T., Sahaya R. R., Kain V., Barua D. K. CFD study of flow accelerated corrosion in 3D elbows. Annals of Nuclear Energy. 2014. Vol. 69. pp. 344–351. 18. Song G. D., Jeon S. H., Son Y. H., Kim J. G., Hur D. H. Galvanic effect of magnetite on the corrosion behavior of carbon steel in deaerated alkaline solutions under flowing conditions. Corrosion Science. 2018. Vol. 131. pp. 71–80. 19. Tsuda N., Nasu K., Fujimori A., Siratori K. Electronic conduction in oxides. Springer Series in Solid-State Sciences, Vol. 94. Berlin, Heidelberg: Springer, 2000. 365 p. 20. Amezhnov А. V., Zarkova Е. I., Rodionova I. G., Aleksandrova N. М. Investigation of the influence of the structural state and microalloying characteristics on the corrosion resistance of ultralow-carbon and low-carbon steels. Problemy Chernoy Metallurgii i Materialovedeniya. 2020. No. 1. pp. 33–45. 21. Shilo I. А., Shaposhnikov N. G., Mogutnov B. М., Strizhakova Т. I., Rodionova I. G., Chirkina I. N. Kinetics of precipitation of manganese sulfide from 08Yu type austenite steel. Problemy Chernoy Metallurgii i Materialovedeniya. 2009. No. 4. pp. 59–63. 22. Gladchenkova Yu. S., Rodionova I. G., Zaytsev А. I., Koldaev А. V., Shaposhnikov N. G., Dyakonov D. L. Complex phase precipitation and properties of low-carbon steels. Problemy Chernoy Metallurgii i Materialovedeniya. 2016. No. 4. pp. 68–73. 23. Zhuk N. P. Course in the theory of corrosion and protection of metals. Moscow : Metallurgiya, 1976. 472 p. |