Журналы →  Gornyi Zhurnal →  2023 →  №7 →  Назад

Название Poroperm properties of backfill made of uranium mill tailings
DOI 10.17580/gzh.2023.07.12
Автор Bodrov A. S.
Информация об авторе

E. P. Slavsky PIMCU, Krasnokamensk, Russia:

A. S. Bodrov, Chief Engineer at Central Research Laboratory, Candidate of Engineering Sciences, info@ppgho.ru


Mitigation of the environmental impact due to placement of radioactive waste of uranium hydrometallurgy in liquid-type tailings storages on ground surface is an urgent scientific and practical issue at E. P. Slavsky PIMCU. In this connection, in 2000–2003 and in 2012–2021, the Company investigated suitability of hydrometallurgy waste in different physical states as components of cemented paste backfill. Based on the permeability/impermeability classifications and testing results, the test samples of backfill mixtures, subject to their formulations, in the testing intervals to 180 days are characterized as impermeable to weakly permeable and as extremely weakly permeable to weakly permeable. The implemented research allows concluding that a cemented paste backfill with a relatively compact-grained structure, and composed of hydrometallurgical tailings and inert aggregates possesses low gas permeability for radon to flow to underground openings through the hardened fill mass. Emanation of Rn from the hardened backfill depends on many factors: dosage of tailings in the backfill composition; uranium content and radioactive equilibrium of initial ore; cement consumption, curing time and strength; volume of filled voids; method of undermining and exposed area of the backfill mass. In case of large volume of voids filled with the mixture composed of hydrometallurgical tailings, for the minimization of radiation exposure of personnel and for the maintenance of radiation safety of mine air, additional activities to combat radon emission are required to be undertaken.

Ключевые слова Cemented paste backfill, hydrometallurgical processing, tailings, poroperm properties, gas permeability, impermeability, permeability factor, artificial rock mass
Библиографический список

1. Bodrov A. S. Applicability of thickened waste of hydrometallurgical uranium ore processing as backfill in underground mines. Gornyi Zhurnal. 2018. No. 7. pp. 40–43.
2. Kuzmin E. V., Kalakutskiy A. V., Tarasov M. A., Morozov A. A. Concept for Disposal of Class 2 and Class 3 Radioactive Waste in Underground Workings with Isolating Backfilling using Paste made with Processed Uranium Ore Materials. Gornaya promyshlennost. 2020. No. 6. pp. 31–36.
3. Kuzmin E. V., Svyatetsky V. S., Markovets V. V. Thickening of uranium ore mill tailings with paste production for underground disposal. Gornyi Zhurnal. 2018. No. 7. pp. 73–76.
4. Kuzmin E. V., Starodumov A. V., Svyatetsky V. S. Recent tendencies in underground mining technologies. Vestnik RAEN. 2015. Vol. 15, No. 4. pp. 47–49.
5. Kultyshev V. I., Kolesaev V. B., Litvinenko V. G., Bryukhovetskiy O. S. Improvement of underground uranium mining. Moscow : Izdatelstvo MGIU, 2007. 211 p.
6. Svyatetskiy V. S., Kuzmin E. V., Kalakutskiy A. V., Morozov A. A., Markovets V. V. et al. Effect of grinding coarseness of uranium mill tailings on radon emanation and strength of paste backfill. GIAB. 2017. No. 6. pp. 342–349.
7. Svyatetskiy V. S., Kuzmin E. V., Kalakutskiy A. V., Morozov A. A., Filonenko V. S. et al. Strength of paste backfill made of uranium mill tailings at Priargunsky Mining and Chemical Works. GIAB. 2017. No. 6. pp. 333–341.
8. German L. K., Atmanskikh S. A., Svetlakov K. N. Influence of water consumption and filler graininess on the backfill structure and quality. Gornyi Zhurnal. 1982. No. 5. pp. 28–31.
9. Elantseva L. A., Fomenko S. V., Afanasev A. Yu. Determination of rock permeability by pneumatic testing in Aikhal Mine. Tendentsii razvitiya nauki i obrazovaniya. 2021. No. 72-2. pp. 84–87.
10. Ermolovich E. A., Donetskiy S. V., Ermolovich O. V. Effect of flocculants on the choice of method for strengthening of hydraulic filling mass. GIAB. 2016. No. 10. pp. 201–211.
11. Ermolovich E. A., Donetskiy S. V. Analysis of physical characteristics of hydraulic fill mass made of ferruginous quartzite processing tailings. Socio-Economic and Environmental Problems of the Mining Industry, Building and Energetics : Proceedings of the 11th International Conference on the Mining Industry, Building and Energetic Problems. Tula : TulGU, 2015. pp. 184–189.
12. Chang-long Wang, Zhen-zhen Ren, Ze-kun Huo, Yong-chao Zheng, Xiao-ping Tian et al. Properties and hydration characteris tics of mine cemented paste backfill material containing secondary smelting water-granulated nickel slag. Alexandria Engineering Journal. 2021. Vol. 60, Iss. 6. pp. 4961–4971.
13. Hongjian Lu, Chongchong Qi, Qiusong Chen, Deqing Gan, Zhenlin Xue et al. A new procedure for recycling waste tailings as cemented paste backfill to underground stopes and open pits. Journal of Cleaner Production. 2018. Vol. 188. pp. 601–612.
14. Mangane M. B. C., Argane R., Trauchessec R., Lecomte A., Benzaazoua M. Influence of superplasticizers on mechanical properties and workability of cemented paste backfill. Minerals Engineering. 2018. Vol. 116. pp. 3–14.
15. Morteza Sheshpari. A Review of Underground Mine Backfilling Methods with Emphasis On Cemented Paste Backfill. The Electronic Journal of Geotechnical Engineering. 2015. Vol. 20, No. 13. pp. 5183–5208.
16. Pavlov I. V., Pokrovskiy S. S., Kamnev E. N. Radiation safety maintenance methods in uranium exploration and production. Moscow : Energoatomizdat, 1994. 256 p.
17. Kolesaev V. B., Bakulin V. A. Development of filling production in Priargunskoe Mining-Chemical Corporation. Gornyi Zhurnal. 2008. No. 8. pp. 41–42.
18. Antonyan A. A. On some features of modern methods for determining the waterproofness of concrete. Tekhnologii betonov. 2017. No. 9-10(134-135). pp. 29–33.
19. Vankova N. R., Fomina A. E. Comparative experiment to determine the waterproofness of concrete by “wet spot” and “breathability” methods. Construction and Geotechnics. 2022. Vol. 13. No. 1. pp. 96–105.
20. Isaenko A. V., Alexandrova T. I. Effect of quicklime grinding fineness on the filtration properties of slag-lime autoclave materials. Vestnik Severo-Vostochnogo federalnogo universiteta imeni M. K. Ammosova. 2011. Vol. 8, No. 2. pp. 67–70.
21. Semenenko S. Ya., Marchenko S. S., Arkov D. P., Gubayuk Yu. D. Instrumental express control of permeability of concrete and reinforced concrete waterworks in melioration systems : Tutorial. Volgograd : Volgogradskiy GAU, 2018. 84 p.
22. Uglyanitsa A. V., Khmelenko T. V., Solonin K. D. Dependence of permeability of steam-cured backfill materials made of furnace clinker on the backfill mixture parameters. Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta. 2012. No. 3(91). pp. 59–62.
23. Shepelev V. A., Katkov I. A. Permeation of coarse-porous concrete and correlation with porosity. Traditions and Innovations in Construction and Architecture. Construction : Collected Works. Samara : Samarskiy gosudarstvenniy arkhitekturno-stroitelniy universitet, 2017. pp. 238–241.
24. Akkaya A., Çağatay İ. H. Investigation of the density, porosity, and permeability properties of pervious concrete with different methods. Construction and Building Materials. 2021. Vol. 294. 123539. DOI: 10.1016/j.conbuildmat.2021.123539
25. Butt Yu. M. Technology of cement and other binding materials : Textbook. 5th revised and enlarged edition. Moscow : Stroyizdat, 1976. 407 p.
26. Didevich A. Impermeability and some other characteristics of concrete. Tekhnologii betonov. 2016. No. 3-4(116-117). pp. 56–59.
27. Maslov N. N. Basics of engineering geology and mechanics of soils : Tutorial. Moscow : Vysshaya shkola, 1982. 511 p.

Language of full-text русский
Полный текст статьи Получить