Журналы →  Chernye Metally →  2023 →  №8 →  Назад

Steel Production
Название Development of an energy-efficient control algorithm for an EAF using a digital twin
DOI 10.17580/chm.2023.08.01
Автор A. A. Nikolaev, R. R. Dema, P. G. Tulupov, S. S. Ryzhevol
Информация об авторе

Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia:
A. A. Nikolaev, Cand. Eng., Associate Prof., Head of the Dept. of Automated Electric Drive and Mechatronics, e-mail: aa.nikolaev@magtu.ru
R. R. Dyoma, Dr. Eng., Prof., Dept. of Machines and Technologies for Metal Forming and Mechanical Engineering, e-mail: demarr@magtu.ru
P. G. Tulupov, Cand. Eng., Associate Prof., Dept. of Automated Electric Drive and Mechatronics, e-mail: tulupov.pg@mail.ru
S. S. Ryzhevol, Post-graduate Student, Dept. of Automated Electric Drive and Mechatronics, e-mail: snaffls18@gmail.com

Реферат

The structure of the circuit for indirect control of the total conductivity in the electric mode control system of HIREG EAFs (Danieli, Italy) is considered. For furnaces on which this system is installed, the problem of overestimated standard deviations of currents and powers of electric arcs is indicated, which leads to non-optimal operation and increased operating costs. As a solution, it is proposed to use the concept of a digital twin to adapt the control loop settings to the current conditions of charge melting. The main idea of the proposed solution is to use a digital analogue of the electrical circuit of the furnace with the HIREG control system to carry out an iterative search for the most optimal controller parameters, provided that its non-optimal operation is detected in accordance with a set of predetermined criteria. The results of the study were implemented on the basis of one of the domestic furnaces. A technical effect has been achieved in the form of a reduction in the standard deviations of the signals of currents and powers of electric arcs, which has ensured a reduction in time under current and the specific consumption of electricity.
This work was supported financially by the Ministry of Science and Higher Education of the Russian Federation (Project No. FZRU-2023-0008).

Ключевые слова Electric arc furnace, digital twin, electric mode control system, electric arc, hydraulic drive for moving electrodes, autocorrelation function, spectral density function, shaping filter
Библиографический список

1. Xiang F., Zhi Z., Jiang G. Digital twins technolgy and its data fusion in iron and steel product life cycle. 2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC). Zhuhai, China. 2018. DOI: 10.1109/ICNSC.2018.8361293
2. Nikolaev А. А., Kornilov G. P., Yakimov I. А. Investigation of operating modes of electric arc furnaces in combination with static thyristor reactive power compensators. Elektrometallurgiya. 2014. No. 6. pp. 9–13.
3. Nikolaev А. А. Improvement of efficiency of electric arc furnaces and ladle-furnace units through the use of advanced algorithms to control electrical modes: monograph. Magnitogorsk: Izdatelstvo Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta imeni G. I. Nosova, 2015. 161 p.
4. Mironov Yu. М. Electric arc in electrotechnological installations: monograph. Cheboksary: Izdatelstvo Chuvashskogo universiteta, 2013. 290 p.
5. Nikolaev А. А., Tulupov P. G., Ivekeev V. S. Comparative analysis of modern electric control systems for electric arc furnaces and ladle-furnace units. Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: Energetika. 2020. Vol. 20. No. 3. pp. 52–64.
6. Radionov А. А., Karandaev А. S., Loginov B. М., Gasiyarova О. А. Conceptual directions for creating digital twins of electrotechnological systems of rolling production units. Izvestiya vuzov. Elektromekhanika. 2021. Vol. 64. No. 1. pp. 54–68.
7. Yakimov I. A., Radionov A. A., Maklakova E. A. Investigation of electrical characteristics of highpower electric arc furnaces in the mode of stabilizing the primary current of the furnace transformer by means the thyristor regulator in the intermediate circuit. 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). Moscow and St. Petersburg, Russia. 2018. pp. 840–844.
8. Bowman B., Krüger K. Arc furnace physics. Düsseldorf: Verlag Stahleisen GmbH, 2009. 245 p.
9. Vinayaka V. M., Vinayaka K. U. Modeling and simulation of electric furnace in steel industry for power quality analysis. 2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT), Kannur, India. 2022. pp. 479–484.
10. Gała M., Sawicki A., Jagieła K. Modeling of asymmetrical operating states of AC electric arc furnace in the power system. 2019 Applications of Electromagnetics in Modern Engineering and Medicine (PTZE). Janow Podlaski, Poland. 2019. pp. 42–46.
11. Makarov А. N. The laws of heat transfer of an electric arc and a torch in metallurgical furnaces and power plants. Tver: Izdatelstvo Tverskogo gosudarstvennogo tekhnicheskogo universiteta, 2012. 164 p.
12. Shpiganovich А. N., Zakharov К. D. Features of power supply systems of steelmaking and ferroalloy industries. Lipetsk: LGTU, 2004. 213 p.
13. Nikolaev А. А. Improvement of efficiency of the static thyristor compensator of a UHP electric arc furnace: Dissertation … of Candidate of Engineering Sciences. Magnitogorsk, 2009. 204 p.
14. Nikolaev А. А., Tulupov P. G. Technique for modeling random disturbances of electric arcs lengths for tuning a nonlinear P-controller of impedance. Chernye Metally. 2021. No. 11. pp. 74–80.
15. Tulupov P. G. Improvement of the EAF energy performance through a control system with harmonic analysis of arc voltages: Dissertation … of Candidate of Engineering Sciences. Magnitogorsk, 2021. 122 p.
16. Hani H., Abdel-Rahman M. A., Ezzat M., Kamh M. Z. Time domain analysis and parameter tuning of electric arc furnace using cassie-mayr model. 2022 23rd International Middle East Power Systems Conference (MEPCON). Cairo, Egypt. 2022. DOI: 10.1109/MEPCON55441.2022.10021719
17. Dietz M., Grabowski D., Klimas M., Starkloff H. J. Estimation and analysis of the electric arc furnace model coefficients. IEEE Transactions on Power Delivery. 2022. Vol. 37, Iss. 6. pp. 4956–4967.
18. Klimas M., Grabowski D. Application of the deterministic chaos in AC electric arc furnace modeling. 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe). Prague, Czech Republic. 2022. DOI: 10.1109/EEEIC/ICPSEurope54979.2022.9854594
19. Xu R., Ma S., Zhang M. Modeling of electric arc furnace for power quality analysis. 2022 IEEE 3rd China International Youth Conference on Electrical Engineering (CIYCEE). Wuhan, China. 2022. DOI: 10.1109/CIYCEE55749.2022.9958980
20. Balouji E., Salor Ö., McKelvey T. Deep learning based predictive compensation of flicker, voltage dips, harmonics and interharmonics in electric arc furnaces. IEEE Transactions on Industry Applications. 2022. Vol. 58, Iss. 3. pp. 4214–4224.
21. Lee C., Kim H., Lee E. J., Baek S. T., Shim J. W. Measurement-based electric arc furnace model using ellipse formula. IEEE Access. 2021. Vol. 9. pp. 155609–155621.
22. Klimas M., Grabowski D. Application of shallow neural networks in electric arc furnace modeling. IEEE Transactions on Industry Applications. 2022. Vol. 58, Iss. 5. pp. 6814–6823.
23. Cassie A. M. A new theory of breaker arcs and circuit rigidity. CIGRE Report. 1939. Vol. 102. pp. 588–608.
24. Svenchaskiy А. D., Zherdev I. Т., Kruchinin А. М. et al. Electric industrial furnaces: arc furnaces and special heating installations: textbook for universities. Edited by А. D. Svenchaskiy. Moscow: Energoizdat, 1981. 296 p.
25. Andreev S. М., Parsunkin B. N., Golovko N. А., Usachev М. V., Polko P. G., Logunova О. S. Development of the concept of an extermal fuzzy system for automatic optimization of the energy mode control of steel smelting in an EAF. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta imeni G. I. Nosova. 2011. No. 3. pp. 88–91.

Language of full-text русский
Полный текст статьи Получить
Назад