Реферат |
Industrially altered areas of mining facilities and, especially, mining waste storages constitute a serious threat to hydro-ecosystems. The article describes the hydro-ecological studies carried out in the location area of Fosforit Industrial Group—a manufacture of mineral fertilizers and other chemical products. The data were obtained over the period from 2017 to 2023. It is highlighted that after reclamation of surface mines of Yuzhny Mine Management, the hydrogeological regime in the area has changed. The water bodies generated in the voids of open pits mined-out with internal dumping belong to an oligotrophic–mesotrophic type. The water content of fluorides and nitrates complies with the standards set for the fish-husbandry water bodies. The concentrations of ammonia nitrogen, nitrites, sulfates, fluorides and such metals as iron and manganese are below the background values. In the meanwhile, in the water bodies westward of the operating mine infrastructure, where the phosphogypsum dumps are located, a hydrochemical envelope is formed, with high concentrations of phosphorus and sulfates. The implemented experiment demonstrated a high migration capacity of some phosphogypsum components in a water solution. The article also gives the data on water sampled at the mouth of the Verkhovskoi stream, which show that, despite a substantial weakening, under certain hydrological conditions, the production waste storage facilities can be hazardous for the hydro-ecosystem of the Luga River, and can promote eutrop hication of the Gulf of Finland.
The study was carried out under the state contract with the Saint-Petersburg Mining University, Contract No. FSRRW-2023-0002. |
Библиографический список |
1. Carstensen J., Andersen J. H., Gustafsson B. G., Conley D. J. Deoxygenation of the Baltic Sea during the last century. Proceedings of the National Academy of Sciences of the United States of America. 2014. Vol. 111, No. 15. pp. 5628–5633. 2. Elmgren R., Blenckner T., Andersson A. Baltic Sea management: Successes and failures. Ambio: A Journal of the Human Environment. 2015. Vol. 44, Special Iss. 3. pp. 335–344. 3. Gustafsson B. G., Schenk F., Blenckner T., Eilola K., Meier H. E. M. et al. Reconstructing the development of Baltic Sea eutrophication 1850–2006. Ambio: A Journal of the Human Environment. 2012. Vol. 41, Iss. 6. pp. 534–548. 4. Kabel K., Moros M., Porsche C., Neumann T., Adolphi F. et al. Impact of climate change on the Baltic Sea ecosystem over the past 1,000 years. Nature Climate Change. 2012. Vol. 2. pp. 871–874. 5. Bonsdorff E., Rönnberg C., Aarnio K. Some ecological properties in relation to eutrophication in the Baltic Sea. Hydrobiologia. 2002. Vol. 475-476. pp. 371–377. 6. Vahtera E., Conley D. J., Gustafsson B. G., Kuosa H., Pitkänen H. et al. Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea. Ambio: A Journal of the Human Environment. 2007. Vol. 36, No. 2-3. pp. 186–194. 7. Krapf K., Naumann M., Dutheil C., Meier H. E. M. Investigating hypoxic and euxinic area changes based on various datasets from the Baltic Sea. Frontiers in Marine Science. 2022. Vol. 9. 823476. DOI: 10.3389/fmars.2022.823476 8. Meier H. E. M., Eilola K., Almroth-Rosell E., Schimanke S., Kniebusch M. et al. Disentangling the impact of nutrient load and climate changes on Baltic Sea hypoxia and eutrophication since 1850. Climate Dynamics. 2019. Vol. 53, Iss. 1-2. pp. 1145–1166. 9. Conley D. J., Björck S., Bonsdorff E., Carstensen J., Destouni G. et al. Hypoxia-related processes in the Baltic Sea. Environmental Science & Technology. 2009. Vol. 43, No. 10. pp. 3412–3420. 10. Zillén L., Conley D. J., Andrén T., Andrén E., Björck S. Past occurrences of hypoxia in the Baltic Sea and the role of climate variability , environmental change and human impact. Earth-Science Reviews. 2008. Vol. 91, No. 1-4. pp. 77–92. 11. Kuprijanov I., Väli G., Sharov A., Berezina N., Liblik T. et al. Hazardous substances in the sediments and their pathways from potential sources in the eastern Gulf of Finland. Marine Pollution Bulletin. 2021. Vol. 170. 112642. DOI: 10.1016/j.marpolbul.2021.112642 12. Rönnberg C., Bonsdorff E. Baltic Sea eutrophication: area-specific ecological consequences. Hydrobiologia. 2004. Vol. 514, Iss. 1-3. pp. 227–241. 13. Murray C. J., Müller-Karulis B., Carstensen J., Conley D. J., Gustafsson B. G. et al. Past, present and future eutrophication status of the Baltic Sea. Frontiers in Marine Science. 2019. Vol. 6, No. 2. DOI: 10.3389/fmars.2019.00002 14. Petrova T. A., Rudzish E. Types of soil improvers for reclamation of mining-disturbed lands. GIAB. 2021. No. 4. pp. 100–112. 15. Matveeva V. A., Smirnov Yu. D., Suchkov D. V. Industrial processing of phosphogypsum into organomineral fertilizer. Environmental Geochemistry and Health. 2022. Vol. 44, Iss. 5. pp. 1605–1618. 16. Kachor O. L., Sarapulova G. I., Bogdanov A. V. Investigation of the possibility of immobilization of mobile forms of arsenic in technogenic soils. Journal of Mining Institute. 2019. Vol. 239. pp. 596–602. 17. Sarapulova G. I. Geochemical approach in assessing the technogenic impact on soils. Journal of Mining Institute. 2020. Vol. 243. pp. 388–392. 18. Plokhov A. S., Kharko P. A., Pashkevich M. A. Effect of tailings storage facility on surface water at copper-pyrite deposit. GIAB. 2021. No. 4. pp. 57–68. 19. Babenko D. A., Pashkevich M. A. Study of the composition and properties of the copper ore processing tailings of PJSC Gaysky Mining and Processing Plant. Obogashchenie Rud. 2021. No. 2. pp. 47–52. 20. Tayibi H., Choura M., López F. A., Alguacil F. J., López-Delgado A. Environmental impact and management of phosphogypsum. Journal of Environmental Management. 2009. Vol. 90, Iss. 8. pp. 2377–2386. 21. Nemchinova N. V., Tyutrin A. A., Somov V. V. Determination of optimal fluorine leaching parameters from the coal part of the waste lining of dismantled electrolytic cells for aluminum production. Journal of Mining Institute. 2019. Vol. 239. pp. 544–549. 22. Litvinova T. E., Oleynik I. L. Dissolution kinetics of rare earth metal phosphates in carbonate solutions of alkali metals. Journal of Mining Institute. 2021. Vol. 251. pp. 712–722. 23. Cánovas C. R., Pérez-López R., Macías F., Chapron S., Nieto J. M. et al. Exploration of fertilizer industry wastes as potential source of critical raw materials. Journal of Cleaner Production. 2017. Vol. 143. pp. 497–505. 24. Ponomareva M. A., Cheremisina O. V., Mashukova Yu. A., Lukyantseva E. S. Increasing the efficiency of rare earth metal recovery from technological solutions during processing of apatite raw materials. Journal of Mining Institute. 2021. Vol. 252. pp. 917–926. 25. Knuuttila S., Räike A., Ekholm P., Kondratyev S. Nutrient inputs into the Gulf of Finland: Trends and water protection targets. Journal of Marine Systems. 2017. Vol. 171. pp. 54–64. 26. Building Capacity within Environmental Monitoring to Produce Pollution Load Data from Different Sources for HELCOM Pollution Load Compilations, Balthazar II : The Progress Report on Additional Sampling Within Bathazar Project in the Activity. 2012. Available at: https://portal.helcom.fi/Archive/Shared%20Documents/LAND%2017-2012_4-9%20BALTHAZAR%20prog%20rep_Helcom%20load.pdf (accessed: 08.02.2023). 27. Ecological Situation in the Leningrad Region : Information and Analysis Digest. Saint-Petersburg, 2022. 528 p. 28. Dmitrakova Ya. A., Abakumov E. V. Restoration of soils and vegetation on reclamation sites of the Kingisepp Phosphorite Field. Eurasian Soil Science. 2018. Vol. 51, No. 5. pp. 588–597. 29. Vampilova L. B., Sokolova A. A., Brodskaya N. A., Sevastyanov D. V., Trifonov A. N. Problems of geoturism development in the north-western recreational region of Russia. Proceedings of the 18th International Multidisciplinary Scientific GeoConference. Albena, 2018. Vol. 18, Iss. 5.2. pp. 731–738. 30. Brodskaya N. A., Pavlov A. N. Possibilities of landscape-ecological tourism development on the territories with heightened anthropogenic impact on the environment. Uchenye zapiski Rossiyskogo gosudarstvennogo gidrometeorologicheskogo universiteta. 2013. No. 30. pp. 155–172. 31. Brodskaya N. A., Myakisheva N. V., Aleksandrova K. V. The estimation of different scale surface and undersurface waters interrelation. Uchenye zapiski Rossiyskogo gosudarstvennogo gidrometeorologicheskogo universiteta. 2015. No. 38. pp. 36–50. 32. Elsukova E.Yu., Nedbaev I. S., Kuzmina D. S. Monitoring of soil pollution in the area affected by the production of phosphorus fertilizers. Vestnik Sankt-Peterburgskogo universiteta. Nauki o Zemle. 2022. Vol. 67, No. 4. pp. 652–674. 33. ISO 5667-6:2014. Water quality – Sampling – Part 6: Guidance on Sampling of Rivers and Streams. Geneva, 2014. 26 p. 34. Available at: https://docs.cntd.ru/document/420389120 (accessed: 15.06.2023). |