Журналы →  Chernye Metally →  2023 →  №10 →  Назад

Mineral Processing
Название Improvement of concentrate quality by using fine screening in iron ore grinding stages
DOI 10.17580/chm.2023.10.01
Автор A. E. Pelevin
Информация об авторе

Ural State Mining University, Ekaterinburg, Russia

A. E. Pelevin, Dr. Eng., Associate Prof., Prof., Dept. of Mineral Processing, e-mail: a-pelevin@yandex.ru


The possibility of improving the quality of iron concentrate by using technology of fine screening in the second and third stages of grinding was investigated. Six enrichment schemes for titanium-magnetite ore were tested in laboratory conditions, differing in the sizes of screens used in the second and third stages of grinding: 0.63; 0.315; 0.16 and 0.1 mm. The use of fine screening in the three-stage grinding and beneficiation scheme in the second and third stages instead of hydrocyclones made it possible to increase the iron content in the concentrate: depending on the size of the screen openings, the iron content in the concentrate increased from 61.21 to 61.94–64.22%. With an increase in the mass fraction of iron in the concentrate, the yield of the concentrate and the extraction of iron into the concentrate decrease. The maximum iron content in the concentrate (64.22%) was achieved using a scheme that provides for the installation of screens with screen opening sizes of 0.63 and 0.1 mm in the second and third stages of grinding. In the second stage of grinding, when using sieves with larger openings, the rock minerals are mainly released, which allows them to be separated into larger tailings using wet magnetic separation. The use of sieves with small openings in the third stage of grinding leads to the releasing of titanomagnetite grains and remaining rock minerals. This enables to obtain a high-quality concentrate in the last stage of wet magnetic separation.

Ключевые слова Fine screening, grinding, sieve opening size, quality of iron concentrate, grade content –71 microns, concentrate yield, iron recovery
Библиографический список

1. Löf A., Ericsson M., Löf O. Iron ore market review. CIS Iron and Steel Review. 2019. Vol. 17. pp. 4–9.
2. Ericsson M., Löf A., Löf O. Overview of the global iron ore market for 2019–2020. Gornaya promyshlennost. 2021. No. 1. pp. 74–82. DOI: 10.30686/1609-9192-2021-1-74-82
3. Holmes R. J., Yifan Lu, Liming Lu. Chapter 1 – Introduction: Overview of the global iron ore industry. Iron Ore (Second Edition). Mineralogy, Processing and Environmental Sustainability. Woodhead Publishing Series in Metals and Surface Engineering. 2022. pp. 1–56. DOI: 10.1016/B978-0-12-820226-5.00023-9
4. Chernousov P. I., Karpalev A. E., Kramar A. V., Podusovskiy V. O. Comprehensive index of compound blast furnace smelting. CIS Iron and Steel Review. 2022. Vol. 23. pp. 9–14.
5. Sibagatullin S. K., Kharchenko A. S., Savchenko G. Yu., Beginyuk V. A. Blast furnace performance improved through optimal radial distribution of materials at the top while changing the charging pattern. CIS Iron and Steel Review. 2018. Vol. 16. pp. 11–14.
6. Senchenko A. E., Kulikov Yu. V., Tokarenko A. V. In-process testing – A framework for the effective production modernization at Lebedinsky GOK. Gornyi Zhurnal. 2022. No. 6. pp. 59–67.
7. Rocha G. M., da Cruz M. V. M., Lima N. P., Lima R. M. F. Reverse cationic flotation of iron ore by amide-amine: bench studies. Journal of Materials Research and Technology. 2022. Vol. 18. pp. 223–230. DOI: 10.1016/j.jmrt.2022.02.039
8. Zhiqiang Huang, Wenyuan Li, Shuyi Shuai, Shiyong Zhang et al. Iron ore production using a new Gemini surfactant at 273 K. Chemical Communications. 2022. Vol. 62, Iss. 58. pp. 8678–8681. DOI: 10.1039/D2CC02705D
9. Opalev A. S., Karpov I. V., Krivovichev S. V. Enhancing magnetite quartzite processing efficiency at Karelsky Okatysh. Gornyi Zhurnal. 2021. No. 11. pp. 66–74.
10. Pelevin A. E. Improving magnetite concentrate quality in an alternating magnetic field. Obogashchenie Rud. 2019. No. 6. pp. 19–24.
11. Korchevenkov S. A., Aleksandrova T. N. Preparation of standard iron concentrates from non-traditional forms of raw material using a pulsed magnetic field. Metallurgist. 2017. Vol. 61. No. 5-6. pp. 375–381. DOI: 10.1007/s11015-017-0503-z
12. Ismagilov R. I., Golenkov D. N., Sharkovsky D. O., Shelepov E. V., Sychev A. A., Ignatova T. V. Method for increasing quality of magnetite concentrates. Patent RF, No. 2751185. Applied: 07.09.2020. Published: 12.07.2021. Bulletin No. 20.
13. Efendiev N. T., Ugarov A. A., Ismagilov R. I., Golenkov D. N. et al. Method for producing high-quality magnetite concentrates. Applied: 07.09.2020. Published: 06.09.2021. Bulletin No. 25.
14. Nemykin S. A., Kopanev S. N., Mezentseva E. V., Okunev S. M. Iron concentrate production with the increased content of useful component. Gornyi Zhurnal. 2017. No. 5. pp. 27–31.
15. Kuskov V. B., Lvov V. V., Yushina T. I. Increasing the recovery ratio of iron ores in the course of preparation and processing. CIS Iron and Steel Review. 2021. Vol. 21. pp. 4–8.
16. Osipova N. V. Use of the Kalman filter in automatic monitoring of iron ore magnetic enrichment indicators. Izvestiya vuzov. Chernaya metallurgiya. 2018. Vol. 61. No. 5. pp. 372–377.
17. Xiaolong Zhang, Yuexin Han, Parra-Álvarez N., Claremboux V., Kawatra S. K. Flotation of iron ores: A review. Mineral Processing and Extractive Metallurgy Review. 2019. Vol. 42. pp. 1–29. DOI: 10.1080/08827508.2019.1689494
18. Elves Matiolo, Hudson Jean Bianquini Couto, Neymayer Lima, Klaydison Silva, Amanda Soaresde Freitas. Improving recovery of iron using column flotation of iron ore slimes. Minerals Engineering. 2020. Vol. 158. 106608. DOI: 10.1016/j.mineng.2020.106608
19. Kalyuzhnaya R.V. Optimization of magnetic-gravitational separation parameters based on the study of interparticle magnetic interactions in a magnetically stabilized fluidized bed. Gornyi informatsionno-analiticheskiy byulleten. 2018. No. 7. pp. 146–152. DOI: 10.25018/0236-1493-2018-7-0-146-152
20. Ismagilov R. I., Kozub A. V., Gridasov I. N., Shelepov E. V. Modern directions for increasing the efficiency of processing ferruginous quartzites using the example of JSC Mikhailovsky Mining and Processing Plant named after. A. V. Varichev. Gornaya promyshlennost. 2020. No. 4. pp. 98–103. DOI: 10.30686/1609-9192-2020-4-98-103
21. Moraes M. N., Galery R., Mazzinghy D. B. A review of process models for wet fine classification with high frequency screens. Powder Technology. 2021. Vol. 394. pp. 525–532. DOI: 10.1016/j.powtec.2021.08.078
22. Barbosa V. P., Menezes A. L., Gedraite R., Ataíde C. H. Vibration screening: A detailed study using image analysis techniques to characterize the bed behavior in solid–liquid separation. Minerals Engineering. 2020. Vol. 154. 106383. DOI: 10.1016/j.mineng.2020.106383
23. Pelevin A. E., Sytykh N. A. Fine hydraulic screening for staged separation of titaniummagnetite concentrate. Obogashchenie Rud. 2021. No. 1. pp. 8–14.
24. Kosoy G. M., Vinnikov A. Ya. Fine hydraulic screening of ground ores on a multifrequency screen by Kroosh Technologies: in-process testing. Tsvetnye Metally. 2021. No. 6. pp. 10–15.
25. Samayamutthirian Palaniandy, Rinto Halomoan, Hidemasa Ishikawa. TowerMill circuit performance in the magnetite grinding circuit – The multi-component approach. Minerals Engineering. 2019. Vol. 133. pp. 10–18. DOI: 10.1016/j.mineng.2018.12.019
26. Fominykh V. G., Kraeva Yu. P., Larina N. V. Petrology and ore genesis of the Kachkanar massif. Sverdlovsk : Izdatelstvo RISO UNTs AN SSSR, 1987. 180 p.
27. Pelevin A. E., Sytykh N. A., Cherepanov D. V. Particle size impact on dry magnetic separation efficiency. Gornyi informatsionno-analiticheskiy byulleten. 2021. No. 11–1. pp. 293–305. DOI: 10.25018/0236_1493_2021_111_0_293
28. Pelevin A. E. Reduction of iron ore grinding stages through the use of fine screening in a closed cycle. Chernye Metally. 2022. No. 12. pp. 4–9.
29. Pelevin A. E., Sytykh N. A. Titanomagnetite ore two-stage grinding circuit test. Obogashchenie Rud. 2018. No. 2. pp. 13–18.
30. Pelevin A. E., Sytykh N. A. Efficiency of screens and hydrocyclones in closed-cycle grinding of titanomagnetite ore. Gornyi informatsionno-analiticheskiy byulleten. 2022. No. 5. pp. 154–166. DOI: 10.25018/0236_1493_2022_5_0_154
31. Campos T. M., Bueno G., Barrios G. K. P., Tavares L. M. Pressing iron ore concentrate in a pilot-scale HPGR. Part 1: Experimental results. Minerals Engineering. 2019. Vol. 140. 105875. DOI: 10.1016/j.mineng.2019.105875
32. Campos T. M., Bueno G., Barrios G. K. P., Tavares L. M. Pressing iron ore concentrate in a pilot-scale HPGR. Part 2: Modeling and simulation. Minerals Engineering. 2019. Vol. 140. 105876. DOI: 10.1016/j.mineng.2019.105876
33. Campos T. M., Bueno G., Rodriguez V. A., Böttcher A. C. et al. Relationships between particle breakage characteristics and comminution response of fine iron ore concentrates. Minerals Engineering. 2021. Vol. 164. 106818. DOI: 10.1016/j.mineng.2021.106818
34. Malyarov P. V., Kuzminykh A. A. Evaluation of the efficiency of grinding and distribution of consumed energy between grinding stages. Izvestiya vuzov. Severo-Kavkazskiy region. Tekhnicheskie nauki. 2008. No. 2. pp. 78–83.
35. Pelevin A. E. Effect of magnetic flocculation on iron-bearing ore concentration. Obogashchenie Rud. 2021. No. 4. pp. 15–20.

Language of full-text русский
Полный текст статьи Получить