Журналы →  Обогащение руд →  2023 →  №5 →  Назад

ПЕРЕРАБОТКА ВТОРИЧНОГО СЫРЬЯ
Название Особенности подготовки природного и техногенного минерального сырья для получения фотокаталитических композиционных материалов
DOI 10.17580/or.2023.05.08
Автор Огурцова Ю. Н., Строкова В. В., Неровная С. В., Губарева Е. Н.
Информация об авторе

Белгородский государственный технологический университет им. В. Г. Шухова, Белгород, РФ

Огурцова Ю. Н., старший научный сотрудник, канд. техн. наук, доцент, ogurtsova.y@yandex.ru

Строкова В. В., директор Инновационного научно-образовательного и опытно-промышленного центра наноструктурированных композиционных материалов, д-р техн. наук, профессор

Неровная С. В., аспирант

Губарева Е. Н., старший науч-ный сотрудник, канд. техн. наук

Реферат

Рассмотрен отечественный и зарубежный опыт подготовки и использования природного, техногенного и синтезированного минерального сырья кремнеземного, алюмосиликатного и карбонатного составов в качестве компонентов фотокаталитических композиционных материалов. Показаны перспективы использования вскрышных и вмещающих пород, отсевов дробления, отходов обогащения, металлургических шлаков, зол-уноса как эффективных носителей фотокаталитического агента для последующего применения при производстве строительных материалов. Рассмотрены кислотно-основные свойства поверхности и их зависимость от состава применяемого сырья, способа и режима подготовки, вида механического воздействия. Рассмотрены способы активации сырья с целью регулирования кислотно-основных свойств его поверхности в сторону повышения кислотности для эффективного синтеза фотокаталитических композиционных материалов и высокой фотокаталитической активности конечных продуктов.

Работа выполнена в рамках реализации государственного задания Минобрнауки РФ № FZWN-2023-0006.

Ключевые слова Природное сырье, отходы, обогащение, техногенное сырье, кремнеземное, алюмосиликатное, карбонатное, полиминеральное сырье, кислотно-основные центры, фотокаталитический композиционный материал
Библиографический список

1. Ozhogina E. G., Kotova O. V., Yakushina O. A., Zhukova V. E. On the possibility of secondary use of mining wastes. Geoekologiya. Inzhenernaya Geologiya, Gidrogeologiya, Geokriologiya. 2020. No. 2. pp. 58–63.
2. Novoselov A. L., Petrov I. V. Modeling utilization of secondary mineral resources. Gornyi Zhurnal. 2019. No. 7. pp. 80–84.
3. Sychev M. M., Minakova T. S., Slizhov Yu. G., Shilova O. A. Acid-basic characteristics of the surface of solids and control of the properties of materials and composites. St. Petersburg: Khimizdat, 2016. 276 p.
4. Belov D. V., Uspenskaya G. I. Influence of photon irradiation on physico-chemical processes and bactericidal properties of real surface of silicon. Orbital. 2018. No. 1. pp. 6–18.
5. Gerasimova L. G., Nikolaev A. I., Shchukina E. S., Safonova I. V. Apatite-nepheline ore mill tailings — A source of functional materials. Gornyi Zhurnal. 2020. No. 9. pp. 78–84.
6. Shilova O. A., Kovalenko A. S., Nikolaev A. M., Mjakin S. V., Sinelnikov A. A., Chelibanov V. P., Gorshkova Y. E., Tsvigun N. V., Ruzimuradov O. N., Kopitsa G. P. Surface and photocatalytic properties of sol–gel derived TiO2@SiO2 coreshell nanoparticles. Journal of Sol-Gel Science and Technology. 2023. Vol. 108. pp. 263–273.
7. Datsko T. Ya., Zelentsov V. I. Nano-TiO2/diatomite composite: Synthesis, structure and heat resistance. Elektronnaya Obrabotka Materialov. 2019. No. 3. pp. 1–14.
8. Ovchinnikov N. L., Vinogradov N. M., Gordina N. E., Butman M. F. Application of activating influences in obtaining TiO2-pillared montmorillonite with improved photocatalytic properties. Izvestiya Vysshikh Uchebnykh Zavedeniy. Seriya: Khimiya i Khimicheskaya Tekhnologiya. 2023. Vol. 66, No. 5. pp. 59–71.
9. Bondarenko V. V., Ruello M. L., Bondarenko A. V., Petukhova G. A., Dubinina L. A. A study of the adsorption–structural parameters and photoactivity of TiO2/kaolinite composite. Fizikokhimiya Poverkhnosti i Zashchita Materialov. 2019. Vol. 55, No. 2. pp. 127–143.
10. Pat. 2478413 Russian Federation.
11. Pakhnutova E. A., Slizhov Yu. G. Synthesis of silokhrom S-120 grafted with transition-metal acetylacetonate layers and its acid-base and chromatographic properties. Neorganicheskie Materialy. 2015. Vol. 51, No. 6. p. 634.
12. Romanova R. G., Petrova E. V. Acid-base properties of the surface of aluminum oxides. Vestnik Kazanskogo Tekhnologicheskogo Universiteta. 2006. No. 6. pp. 73–90.
13. Gubareva E. N., Ogurtsova Yu. N., Strokova V. V., Labuzova M. V. Comparative activity evaluation for silica raw materials and photocatalytic composite materials based on them. Obogashchenie Rud. 2019. No. 6. pp. 25–30.
14. Vysotskaya M. A., Shekhovtsova S. Yu., Kuznetsov D. A. Reaction ability of alternative mineral dispersed materials as a tool for developing efficient road composites. Vestnik Voronezhskogo Gosudarstvennogo Universiteta Inzhenernykh Tekhnologiy. 2019. Vol. 81, No. 1. pp. 282–288.
15. Markov A. Y., Strokova V. V., Markova I. Y., Stepanenko M. A. Physico-chemical properties of fuel ashes as factor of interaction with cationic bitumen emulsion. Lecture Notes in Civil Engineering. 2021. Vol. 95. pp. 294–300.
16. Ermolovich E. A. The effect of grinding on the donoracceptor properties of the surface of the components of the laying materials. Fiziko-tekhnicheskie Problemy Razrabotki Poleznykh Iskopayemykh. 2013. No. 5. pp. 191–198.
17. Tsyganova T. A., Myakin S. V., Kuryndin I. S., Rakhimova O. V. Effect of formation conditions on the functional composition of the surface of high-silica porous glass. Fizika i Khimiya Stekla. 2018. Vol. 44, No. 6. pp. 644–647.
18. Trautvain A. I., Yadykina V. V. Investigation of the effect of grinding modes on the reactivity of mineral powders. Vestnik Kharkovskogo Natsionalnogo Avtomobilno-dorozhnogo Universiteta. 2013. No. 61–62. pp. 248–254.
19. Ryazantseva M. V., Bunin I. Z. Modifying acid–base surface properties of calcite, fluorite and scheelite under electromagnetic pulse treatment. Fiziko-tekhnicheskie Problemy Razrabotki Poleznykh Iskopayemykh. 2015. No. 5. pp. 140–145.

20. Adilkhodjaev A. I., Makhamataliev I. M., Tsoy V. M., Shaumarov S. S. Forecasting the efficiency of introduction of mineral fillers in cement composites. Nauchno-tekhnicheskiy Vestnik Bryanskogo Gosudarstvennogo Universiteta. 2019. No. 1. pp. 105–112.
21. Li C., Sun L., Niu J., Reka A. A., Feng P., Garcia H. Core-shell Bi-containing spheres and TiO2 nanoparticles coloaded on kaolinite as an efficient photocatalyst for methyl orange degradation. Catalysis Communications. 2023. Vol. 175. DOI: 10.1016/j.catcom.2023.106609
22. Pat. US 2010/0266470 A1 USA.
23. Liao G., Yao W., Zuo J. Preparation and characterization of zeolite/TiO2 cement-based composites with excellent photocatalytic performance. Materials. 2018. Vol. 11. DOI: 10.3390/ma11122485
24. Duranoğlu D. Preparation of TiO2/perlite composites by using 23-1 fractional factorial design. Journal of the Turkish Chemical Society, Section A: Chemistry. 2016. Vol. 3, Iss. 3. pp. 299–312.
25. Giannouri M., Kalampaliki Th., Todorova N., Giannakopoulou T., Boukos N., Petrakis D., Vaimakis T., Trapalis C. One-step synthesis of TiO2/perlite composites by flame spray pyrolysis and their photocatalytic behavior. International Journal of Photoenergy. 2013. Vol. 2013. DOI: 10.1155/2013/729460
26. Meng J., Zhong J., Xiao H., Ou J. Interfacial design of nano-TiO2 modified fly ash-cement based low carbon composites. Construction and Building Materials. 2021. Vol. 270. DOI: 10.1016/j.conbuildmat.2020.121470
27. Tu Y., Zhong J., Ding H., Zhang H., Lv G., Zhang J., Hou X. Preparation of fly ash supporting nano-TiO2 composite photocatalyst by a wet mechanical grinding method. Chemical Physics Letters. 2022. Vol. 805. DOI: 10.1016/j.cplett.2022.139978
28. Jiang Y., Liu A. Cornstalk biochar-TiO2 composites as alternative photocatalyst for degrading methyl orange. Environmental Science and Pollution Research. 2023. Vol. 30. pp. 31923–31934.
29. Liao G., Yao W. Upcycling of waste concrete powder into a functionalized host for nano-TiO2 photocatalyst: Binding mechanism and enhanced photocatalytic efficiency. Journal of Cleaner Production. 2022. Vol. 366. DOI: 10.1016/j.jclepro.2022.132918
30. Jimenez-Relinque E., Lee S. F., Plaza L., Castellote M. Synergetic adsorption–photocatalysis process for water treatment using TiO2 supported on waste stainless steel slag. Environmental Science and Pollution Research. 2022. Vol. 29. pp. 39712–39722.
31. Shi J., Kuwahara Y., An T., Yamashita H. The fabrication of TiO2 supported on slag-made calcium silicate as low-cost photocatalyst with high adsorption ability for the degradation of dye pollutants in water. Catalysis Today. 2017. Vol. 281. pp. 21–28.
32. Zhang X., Su X., Gao W., Wang F., Liu Z., Zhan J., Liu B., Wang R., Liu H. Photocatalytic quartz fiber felts with carbon-connected TiO2 nanoparticles for capillarity-driven continuous-flow water treatment. Applied Physics A. 2018. Vol. 124. DOI: 10.1007/s00339-018-1870-4
33. Gu S., Liu X., Wang H., Liu Z., Xing H., Yu L. Preparation and characterization of TiO2 photocatalytic composites supported by blast furnace slag fibres for wastewater degradation. Ceramics International. 2023. Vol. 49, Iss. 3. pp. 5180–5188.
34. Rincón G. J., La Motta E. J. A fluidized-bed reactor for the photocatalytic mineralization of phenol on TiO2- coated silica gel. Heliyon. 2019. Vol. 5, Iss. 6. DOI: 10.1016/j.heliyon.2019.e01966
35. Phattepur H., Hiremath P. G. Fabrication of Al2O3 supported TiO2 membranes for photocatalytic applications. Materials Today: Proceedings. 2022. Vol. 65, Pt. 8. pp. 3694–3699.
36. Bernardes J. C., Müller D., Latocheski E., Domingos J. B., Fey T., Rambo C. R. Microchanneled biomorphous Al2O3 coated with TiO2 aerogel for photocatalytic reduction of 4-nitrophenol. Ceramics International. 2022. Vol. 48, Iss. 11. pp. 15946–15950.
37. Sun T., Wei J., Zhou C., Wang Y., Shu Z., Zhou J., Chen J. Facile preparation and enhanced photocatalytic hydrogen evolution of cation-exchanged zeolite LTA supported TiO2 photocatalysts. International Journal of Hydrogen Energy. 2023. Vol. 48, Iss. 37. pp. 13851–13863.
38. Cui W., Li J., Chen L., Dong X., Wang H., Sheng J., Sun Y., Zhou Y., Dong F. Nature-inspired CaCO3 loading TiO2 composites for efficient and durable photocatalytic mineralization of gaseous toluene. Science Bulletin. 2020. Vol. 65, Iss. 19. pp. 1626–1634.
39. Li F., Liu G., Liu F., Yang S. A WO3–TiO2 nanorod/CaCO3 photocatalyst with degradation-regeneration double sites for NO2-inhibited and durable photocatalytic NO. Chemosphere. 2023. Vol. 324. DOI: 10.1016/j.chemosphere.2023.138277
40. Strokova V. V., Gubareva E. N., Baskakov P. S., Ogurtsova Yu. N., Antonenko M. V., Abzalilova A. V. Photocatalytic activity of composite material obtained by the method of sol-gel deposition of TiO2 on silica support. Vestnik Tekhnologicheskogo Universiteta. 2020. Vol. 23, No. 10. pp. 5–9.
41. Rimoldi L., Meroni D., Falletta E., Ferretti A. M., Gervasini A., Cappelletti G., Ardizzone S. The role played by different TiO2 features on the photocatalytic degradation of paracetamol. Applied Surface Science. 2017. Vol. 424, Iss. 2. pp. 198–205.
42. Belousov P. E., Karelina N. D., Morozov I. A., Rudmin M. A., Milyutin V. V., Nekrasova N. A., Rumyantseva A. O., Zakusina O. V., Krupskaya V. V. Zeolite-containing tripoli of Khotynets deposit (Orel region): Mineral composition, sorption properties and formation conditions. Izvestiya Tomskogo Politekhnicheskogo Universiteta. Inzhiniring Georesursov. 2023. Vol. 334, No. 5. pp. 70–84.
43. Buglov N. A., Butakova L. A., Shakirova E. V., Averkina E. V. Use of silicon production wastes as additives improving the process properties of the cement slurries. Izvestiya Tomskogo Politekhnicheskogo Universiteta. Inzhiniring Georesursov. 2022. Vol. 333, No. 6. pp. 122–130.
44. Brichkin V. N., Kurtenkov R. V., Eldeeb A. B., Bormotov I. S. State and development options for the raw material base of aluminum in non-bauxite regions. Obogashchenie Rud. 2019. No. 4. pp. 31–37.
45. Tanabe K. Solid acids and bases. Moscow: Mir, 1973. 183 с.
46. Ravi M., Sushkevich V. L., Bokhoven J. A. On the location of Lewis acidic aluminum in zeolite mordenite and the role of framework-associated aluminum in mediating the switch between Brønsted and Lewis acidity. Chemical Science. 2021. Vol. 12, Iss. 11. pp. 4094–4103.
47. Grishin I. S., Smirnov N. N., Smirnova D. N. Mechanochemical modification of activated carbon in air. Zhurnal Prikladnoy Khimii. 2020. Vol. 93, No. 11. pp. 1560–1566.
48. Martins R. C., Rezende M. J. C., Nascimento M. A. C., Nascimento R. S. V., Ribeiro S. P. D. S. Synergistic action of montmorillonite with an intumescent formulation: The impact of the nature and the strength of acidic sites on the flame-retardant properties of polypropylene composites. Polymers (Basel). 2020. Vol. 12, Iss. 12. DOI: 10.3390/polym12122781
49. Gerasimov A. M., Arsentyev V. A. Layered silicates and their effects on mineral processing. Obogashchenie Rud. 2018. No. 5. pp. 22–28.

Language of full-text русский
Полный текст статьи Получить
Назад