Журналы →  Gornyi Zhurnal →  2023 →  №10 →  Назад

Название Technological improvement of adsorptive concentration of platinum metals from chloride solutions after hydrometallurgical processing of low-sulfide flotation concentrates
DOI 10.17580/gzh.2023.10.04
Автор Boduen A. Ya., Fokina S. B., Fedorov A. T., Petrov G. V.
Информация об авторе

RIVS Group, Saint-Petersburg, Russia

A. Ya. Boduen, Director of the Hydrometallurgical Department, Candidate of Engineering, Sciences, a_boduen@rivs.ru


Saint-Petersburg Mining University, Saint-Petersburg, Russia
S. B. Fokina, Associate Professor, Candidate of Engineering Sciences
A. T. Fedorov, Assistant, Candidate of Engineering Sciences
G. V. Petrov, Professor, Doctor of Engineering Sciences


The results of the studies into adsorption process of platinum group metals (PGM) from hydrochloric acid solutions during processing of low-sulfide flotation concentrates using the pressure oxidative leaching (POL)—hydrochlorination technology are presented. The sorption isotherms of platinum and trivalent rhodium from hydrochloric acid individual and joint solutions on AH-31, Rossion-70 and Purolite S985 ions were constructed; the kinetic regularities were analyzed using the mathematical models of Boyd, Schmuckler, Lagergren and Ho–Mackey. It is proved that adsorption extraction of platinum and partially rhodium at all ion exchangers is most reliably described by a pseudo-first-order Lagergren model, i.e. in the first minutes the process is limited by film diffusion. It is experimentally found that the use of Purolite S985 ion exchange resin is accompanied by high recovery of platinum and rhodium from both their individual and collective solutions (at 96 %), which significantly exceeds the performance of ion-exchange resin Rossion-70. The use of the POL–hydrochlorination–PGM sorption technology to process flotation concentrates with subsequent ammonia desorption and additional acidic washing of the ionite with hydrochloric acid provides a collective platinum metal concentrate that meets the requirements of refining production.

The study was carried out using laboratory resources of the Sharing Center at the Saint-Petersburg Mining University. The authors express their gratitude and appreciation to the specialists within the RIVS Group and to the members of the Metallurgy Department at the Saint-Petersburg Mining University for the care, help and encouragement rendered during preparation of the article.

Ключевые слова Solid-phase extraction, mathematical modeling, platinum, rhodium, hydrochloric acid solutions, ion exchangers
Библиографический список

1. Litvinenko V. S. Digital economy as a factor in the technological development of the mineral sector. Natural Resources Research. 2020. Vol. 29. рр. 1521–1541.
2. Litvinenko V., Bowbriсk I., Naumov I., Zaitseva Z. Global guidelines and requirements for professional competencies of natural resource extraction engineers: Implications for ESG principles and sustainable development goals. Journal of Cleaner Production. 2022. Vol. 338.
3. Kozyrev B. A., Sizyakov V. M., Arsentyev V. A. Principles of rational processing of red mud with the use of carboxylic acids. Non-Ferrous Мetals. 2022. No. 2. рр. 41–46.
4. Volokitina I., Siziakova E., Fediuk R., Kolesnikov A. Development of a thermomechanical treatment mode for stainless-steel rings. Materials. 2022. Vol. 15(14). DOI: 10.3390/ma15144930
5. Eldeeb A. B., Sizyakov V. M., Brichkin V. N., Kurtenkov R. V. Effect of sintering temperature on the alumina extraction from kaolin. Advances in Raw Material Industries for Sustainable Development Goals. 2021. P. 136–145. DOI: 10.1201/9781003164395-19
6. Ponomarenko T., Nevskaya M., Jonek-Kowalska I. Mineral resource depletion assessment: Alternatives, problems, results. Sustainability. 2021. Vol. 13(2). DOI: 10.3390/su13020862
7. Bulaev A., Boduen A. Carbon sources as a factor determining the activity of microbial oxidation of sulfide concentrate at elevated temperature. Minerals. 2022. Vol. 12(2). DOI: 10.3390/min12020110
8. Golubev V. O., Chistiakov D. G., Brichkin V. N., Litvinova T. E. Systems and aids mathematical modeling of the alumina refinery methods: problems and solutions. Non-ferrous Metals. 2019. No. 1. pp. 40–47.
9. Golubev V. O., Litvinova T. E. Dynamic simulation of industrial-scale gibbsite crystallization circuit. Journal of Mining Institute. 2021. Vol. 247. pp. 88–101.
10. Aleksandrova T. N., Nikolaeva N. V., Lvov V. V., Romashev A. O. Ore processing efficiency improvements for precious metals based on process simulations. Obogashchenie Rud. 2019. Vol. 2. pp. 8–13.
11. Vasileva A.A., Boduen A.Ya. Mineralogical features and processing of copper zinccontaining concentrates (Uchalinsky Mining and Processing Plant). Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2023. Vol. 334, No. 3. pp. 61–72.
12. Ivanik S. A., Ilyukhin D. A. Flotation extraction of elemental sulfur from gold-bearing cakes. Journal of Mining Institute. 2020. Vol. 242. pp. 202–208.
13. Lvov V. V., Chitalov L. S. Modern trends in the design of comminution processes and equipment for non-ferrous metals ores. Tsvetnye Metally. 2020. Vol. 10. pp. 20–26.
14. Dodin D. A., Izoitko V. M. Superlarge man-made deposits of platinum metals. Obogashchenie Rud. 2006. Vol. 6. pp. 19–23.
15. Evdokimov A. N., Fokin V. I., Shanurenko N. K. Gold-rare metal and associated mineralization in the western part of Bolshevik Island, Severnaya Zemlya archipelago. Journal of Mining Institute. 2022. DOI: 10.31897/PMI.2022.94
16. Aleksandrova Т. N., О’Connor С. Processing of platinum group metal ores in Russia and South Africa: current state and prospects. Journal of Mining Institute. 2020. Vol. 244. pp. 462–473. DOI: 10.31897/PMI.2020.4.9
17. Stepanov S. Y., Palamarchuk R. S., Kozlov A. V., Khanin D. A., Varlamov D. A., Kiseleva D. V. Platinum-group minerals of Pt-placer deposits associated with the Svetloborsky Ural-Alaskan type massif, middle Urals, Russia. Minerals. 2019. No. 9. p. 77.
18. Petrov G. V., Greyver T. N., Lazarenkov V. G. Modern status and technological prospects of platinum metals production during the processing of chromite ores. Saint-Petersburg : Nedra, 2001. 200 p.
19. Petrov G.V., Greiver T. N., Vergizova T. V. Method of recovery of platinum metals from platinum-bearing concentrates. Patent RF, No. 2169200 C1.
20. Litvinova T., Kashurin R., Lutskiy D. Complex formation of rare-earth elements in carbonate–alkaline media. Materials. 2023. Vol. 16(8). DOI: 10.3390/ma16083140
21. Sergeev V. V., Cheremisina O. V., Fedorov A. T., Gorbacheva A. A., Balandinsky D. A. Interaction features of sodium oleate and oxyethylated phosphoric acid esters with the apatite surface. ACS Omega. 2022. Vol. 7(3). pp. 3016–3023.
22. Cheremisina O., Ponomareva M., Sergeev V., Mashukova Y., Balandinsky D. Extraction of rare earth metals by solid-phase extractants from phosphoric acid solution. Metals. 2021. Vol. 11(6)/ DOI: 10.3390/met11060991
23. Kholmogorova A. S. Adsorption spectroscopy of palladium (II), platinum (IV) and silver (I) using dithiooxamide-bearing polysyloxane : Dissertation of Candidate of Chemical Sciences. Yekaterinburg, 2016. 190 p.
24. Benguerel Е., Demopoulos G., Harris G. О. В. Speciation and separation of rhodium (III) from chloride solutions: A critical review. Hydrometallurgy. 1996. Vol. 40, Iss. 1–2. pp. 135–152.
25. Avdeeva L. N., Mironov A. V., Borbat V. F. Electrochemical extraction of platinum from the Purolite S920 resin. Tsvetnye Metally. 2014. No. 2. pp. 55–57.
26. Abovsky N. D. Adsorption of palladium (II), platinum (II) and platinum (IV) from chloride solutions at ionites with different functional groups : Dissertation of Candidate of Chemical Sciences. Saint-Petersburg State Technological Institute, 2008.
27. Petrov, G., Zotova I., Nikitina, T., Fokina S. Sorption recovery of platinum metals from production solutions of sulfate-chloride leaching of chromite wastes. Metals. 2021. Vol. 11. DOI: 10.3390/met11040569
28. Blokhin A. A., Voronina S. N., Murashkin Yu. V., Mikhailenko M. A., Medvedsky N. L. Adsorptive recovery of rhodium from multi-component chloride solutions. Khimicheskaya tekhnologiya. 2012. No. 9. pp. 543–547.
29. Blokhin A. A., Gelman G. E., Kleandrov V. T., Murashkin Yu. V. Adsorptive recovery of platinum metals from waste electrolytic solutions of gold electrorefining. Dragotsennye metally. Dragotsennye kamni. 2008. No. 11. pp. 170–173.
30. Susoyeva A. A., Blokhin A. A., Murashkin Yu. V., Mikhaylenko M. A. Sorptive recovery of rhodium (III) from multicomponent chloride solutions in presence of tin (II) chloride. Izvestiya vuzov. Tsvetnaya metallurgiya. 2016. No 5. С. 35–41.
31. Egorov S. A., Blokhin A. A., Murashkin Y. V. Features of the sorption of rhodium(iii) from chloride solutions on an ion exchange resin with thiouronium functional groups. Russian Journal of Applied Chemistry. 2020. Vol. 93, No. 9. pp. 1311–1316.
32. Reichenberg D. Properties of ion-exchange resins in relation to their structure. Kinetics of exchange. Journal of the American Chemical Society. 1953. No. 75. pp. 589–597.
33. Krizhanovskaya O. O., Sinyaeva L. A., Karpov S. I. et al. Kinetic models in description of sorption of fat-soluble physiologically active substances by high-ordered inorganic siliceous materials. Sorbtsionnye I khromatograficheskie processy. 2014. Vol. 14, No. 5. pp. 784–794.
34. Borbat V. F., Shindler A. A., Adeeva L. N. Analysis of platinum sorption from chloride solutions by anionites Rossion-5 and Rossion-10. Izvestiya vuzov. khimiya i khimicheskaya tekhnologiya. 2003. Vol. 46, No. 2. pp. 125–128.
35. Korzh E. A., Klymenko N. A. Kinetic adsorption modeling of pharmaceuticals on activated carbons. Problemy sovremennoj nauki i obrazovaniya. 2017. Vol. 5 (87). pp. 7–13.

Language of full-text русский
Полный текст статьи Получить