Журналы →  CIS Iron and Steel Review →  2023 →  №2 →  Назад

Metal Science and Metal Physics
Название Development of the heat treatment mode for TRIP steel additionally alloyed with aluminium
DOI 10.17580/cisisr.2023.02.11
Автор D. A. Gorlenko, O. A. Kupriyanova, K. G. Pivovarova, M. A. Polyakova
Информация об авторе

Nosov Magnitigorsk State Technical University (Magnitogorsk, Russia)

D. A. Gorlenko, Cand. Eng., Associate Prof., Dept. of Foundry Production and Material Science, e-mail: d.gorlenko@magtu.ru
O. A. Kupriyanova, Cand. Eng., Associate Prof., Dept. of Material Processing Technologies, e-mail: o.nikitenko@magtu.ru
K. G. Pivovarova, Dr. Eng., Associate Prof., Dept. of Material Processing Technologies, e-mail: k.pivovarova@magtu.ru
M. A. Polyakova, Dr. Eng., Associate Prof., Dept. of Material Processing Technologies, e-mail: m.polyakova@magtu.ru


The article is devoted to the development of the heat treatment mode for TRIP steel with a new chemical composition. Aluminum was chosen as an additional alloying element, since by the nature of its effect on the stabilization of overcooled austenite in the temperature range of diffusion transformation, aluminium is similar to silicon, the main alloying element for steels containing metastable austenite in the structure. For the correct development of the heat treatment mode of modified TRIP steel, the critical points were determined by differential scanning calo-rimetry. After determining the temperature limits of the two-phase area, the cast samples were subjected to heat treatment. For all the studied samples, the exposure temperature in the bainite area was 400 °C, and the annealing temperature in the two-phase area was changed from minimum to maximum. The exposure time for both intervals was 20 min and was the same for all samples. As a result, the dependence of the amount of metastable austenite in the structure of modified TRIP steel on the annealing temperature was determined in the intercritical interval (area between the points Ac1 and Ac3). This dependence is of an extreme nature. The article also provides a comparison of the microstructure of modified steel in the cast state and after heat treatment. The analysis of the microstructure allowed us to conclude that continuous monotonous cooling of aluminium-modified TRIP steel made it impossible to obtain a structure containing metastable austenite. In addition, the modified chemical composition of TRIP steel contributes to sufficient stabilization of overcooled austenite in the temperature range of pearlite transformation. The data obtained in this work made it possible to develop a mode of heat treatment of TRIP steel modified with aluminium.
The research was carried out under contract No. 13.2251.21.0107 (№ SIIS "Electronic budget" 075-15-2021-1031) on the topic "Investigation on 3D-printing of Advanced High Strength Steels with TRIP effect for realization of self-adapting aerospace structural elements", funded by the Ministry of Science and Education of the Russian Federation within the joint program for science and technology cooperation and implementation of joint call for Russian-Italian projects for 2021-2023.

Ключевые слова TRIP steel, chemical composition, heat treatment, critical points, annealing, metastable austenite, ferrite, bainite
Библиографический список

1. Kuziak R., Kawalla R., Waengler S. Advanced high strength steels for automotive industry. Archives of Civil and Mechanical Engineering. 2008. Vol. 8 (2). pp. 103-117.
2. Soleimani M., Kalhor A., Mirzadeh H. Transformation-induced plasticity (TRIP) in advanced steels: A review. Materials Science and Engineering: A. 2020. Vol. 795 (23). p. 140023.
3. Gorlenko D. A., Konstantinov D. V., Polyakova M. A., Dabala M. TRIP steels: the features of chemical composition and structure, prospects of application (overview). CIS Iron and Steel Review. 2022. Vol. 23. pp. 67–75.
4. Ranjan R., Bhattacharyya T., Singh S. B. An Overview on Structure–Property Relationship of TRIP-Aided Steel. In: Roy T., Bhattacharya B., Ghosh C., Ajmani S. (eds) Advanced High Strength Steel. Lecture Notes in Mechanical Engineering. Springer, Singapore. 2018. pp. 27-38.
5. Franceschi M., Pezzato L., Gennari C., Fabrizi A., Polyakova M., Konstantinov D., Brunelli K., Dabalà M. Effect of Intercritical Annealing and Austempering on the Microstructure and Mechanical Properties of a High Silicon Manganese Steel. Metals. 2020. Vol. 10 (11). 1448. 19 p.
6. Sugimoto K.-I., Usui N., Kobayashi M., Hashimoto S.-I. Effects of Volume Fraction and Stability of Retained Austenite on Ductility of TRIP-aided Dual-phase Steels. ISIJ International. 1992. Vol. 32 (12). pp. 1311-1318.
7. Emadoddin E., Akbarzadeh A., Daneshi Gh. Effect of intercritical annealing on retained austenite characterization in textured TRIP-assisted steel sheet. Materials Characterization. 2006. Vol. 57 (4-5). pp. 408-413.
8. Cai Z. H., Ding H., Misra R. D. K., Ying Z. Y. Austenite stability and deformation behavior in a cold-rolled transformationinduced plasticity steel with medium manganese content. Acta Materialia. 2015. Vol. 84 (1). pp. 229-236.
9. Azizi G., Mirzadeh H., Parsa M. H. Unraveling the Effect of Homogenization Treatment on Decomposition of Austenite and Mechanical Properties of Low-Alloyed TRIP Steel. Steel Research International. 2016. Vol. 87 (7). pp. 820-823.
10. Pornputsiri N., Kanlayasiri K. Effect of bending temperatures on the microstructure and springback of a TRIP steel sheet. Defence Technology. 2020. Vol. 16 (5). pp. 980-987.
11. Huang J., Poole W. J., Militzer M. Austenite formation during intercritical annealing. Metall Materials Transactions A. 2004. Vol. 35. pp. 3363–3375.
12. Vandijk N., Butt A., Zhao L., Sietsma J., Offerman S., Wright J., Vanderzwaag S. Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling. Acta Materialia. 2005. Vol. 53 (20). pp. 5439-5447.
13. Jacques P. J., Delannay F., Ladrière J. On the influence of interactions between phases on the mechanical stability of retained austenite in transformation induced plasticity multiphase steels. Metall Materials Transactions A. 2001. Vol. 32. pp. 2759–2768.
14. Bhadeshia H. K. D. H., Edmonds D. V. The bainite transformation in a silicon steel. Metall Materials Transactions A. 1979. Vol. 10. pp. 895–907.
15. Mahieu J., De Cooman B. C., Claessens S. Galvanizability of highstrength steels for automotive applications. Metall Materials Transactions A. 2011. Vol. 32. pp. 2905–2908.
16. Jacques P. J., Girault E., Harlet Ph., Delannay F. The Developments of Cold-rolled TRIP-assisted Multiphase Steels. Low Silicon TRIP-assisted Multiphase Steels. ISIJ International. 2001. Vol. 41 (9). pp. 1061-1067.
17. Girault E., Mertens A., Jacques P., Houbaert Y., Van Humbeeck J. Comparison of the effects of silicon and aluminium on the tensile behaviour of multiphase TRIP-assisted steels. Scripta Materialia. 2001. Vol. 44 (6). pp. 885-892.
18. Zhu K., Mager C., Huang M. Effect of substitution of Si by Al on the microstructure and mechanical properties of bainitic transformation-induced plasticity steels. Journal of Materials Science & Technology. 2017. Vol. 33 (12). pp. 1475-1486.
19. Cai Z. H., Cai B., Ding H., Chen Y., Misra R. D. K. Microstructure and deformation behavior of the hot-rolled medium manganese steels with varying aluminium-content. Materials Science and Engineering: A. 2016. Vol. 676 (31). pp. 263-270.
20. Li Liu, Binbin He, Mingxin Huang. The Role of Transformation-Induced Plasticity in the Development of Advanced High Strength Steels. Advanced Engineering Materials. 2018. Vol. 20 (6). р. 1701083.
21. Jacques P. J., Girault E., Mertens A., Verlinden B., van Humbeeck J., Delannay F. The Developments of Cold-rolled TRIPassisted Multiphase Steels. Alalloyed TRIP-assisted Multiphase Steels. ISIJ International. 2001. Vol. 41 (9). pp. 1068-1074.
22. Mahieu J., De Cooman B. C., Maki J. Phase transformation and mechanical properties of Si-free CMnAl transformationinduced plasticityaided steel. Metall Mater Trans A. 2002. Vol. 33. pp. 2573–2580.
23. Garcia-Mateo C., Caballero F. G., Bhadeshia H. K. D. H. Acceleration of Low-temperature Bainite. ISIJ International. 2003. Vol. 43 (11). pp. 1821-1825.
24. Chiang J., Boyd J. D., Pilkey A. K. Effect of microstructure on retained austenite stability and tensile behaviour in an aluminium-alloyed TRIP steel. Materials Science and Engineering: A. 2015. Vol. 638 (25). pp. 132-142.
25. Wang H.-S., Kang J., Dou W.-X., Zhang Y.-X., Yuan G., Cao G.-M., Misra R. D. K., Wang G.-D. Microstructure and mechanical properties of hotrolled and heat-treated TRIP steel with direct quenching process. Materials Science and Engineering: A. 2017. Vol. 702 (15). pp. 350-359.
26. Mirzaev D. A., Yakovleva I. L., Tereshchenko N. A., Buldashev I. V., Mirzoev A. A. Thermodynamics, structure and concentration of carbide-free bainite in manganese-silicon steels during its formation. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta im. G. I. Nosova. 2018. Vol. 16 (1). pp. 26-36.

Полный текст статьи Development of the heat treatment mode for TRIP steel additionally alloyed with aluminium