Журналы →  Обогащение руд →  2023 →  №6 →  Назад

ПРИРОДООХРАННЫЕ ТЕХНИКА И ТЕХНОЛОГИЯ
Название Комплекс для создания хранилищ особо опасных отходов: обоснование конструкции и параметров
DOI 10.17580/or.2023.06.08
Автор Юнгмейстер Д. А., Уразбахтин Р. Ю., Нгуен Кхак Линь, Тимофеев М. И.
Информация об авторе

Санкт-Петербургский горный университет императрицы Екатерины II, г. Санкт-Петербург, РФ

Юнгмейстер Д. А., профессор, д-р техн. наук, старший научный сотрудник, Yungmeyster_DA@pers.spmi.ru

Уразбахтин Р. Ю., исполнительный директор НОЦ коллективного пользования высокотехнологичным оборудованием, канд. техн. наук, urazbakhtin_ryu@pers.spmi.ru

 

Ханойский университет горного дела и геологии, г. Ханой, Вьетнам

Нгуен Кхак Линь, ассистент, канд. техн. наук, khaclinhhumg@gmail.com

Тимофеев М. И., студент, s181244@stud.spmi.ru

Реферат

Проведены исследования по определению конструктивных и силовых параметров гидродомкратов передвижки, которые обеспечат надежное и безопасное перемещение комплекса для создания хранилищ особо опасных отходов и его компонентов. Установлено теоретическое значение коэффициента сопротивления движению комплекса (0,4–6), которое указывает на различные факторы, включая массу частей самого устройства, крепость пород и шаг передвижки. Рассмотрены особенности работы при различных крепостях пород, даны рекомендации по выбору силового оборудования. Для их подтверждения был проведен процесс нагружения 3D-модели секции шагающей крепи с использованием метода конечных элементов в программе AutoDesk Inventor. По результатам моделирования произведено усиление конструкций для обеспечения безопасности работы комплекса.

Ключевые слова Экология, хранилище особо опасных отходов, хранение радиоактивных отходов, проходческий комплекс, крепость пород, сменный исполнительный орган, 3D-моделирование
Библиографический список

1. Marsh A. I., Williams L. G., Lawrence J. A. The important role and performance of engineered barriers in a UK geological disposal facility for higher activity radioactive waste. Progress in Nuclear Energy. 2021. Vol. 137. DOI: 10.1016/j.pnucene.2021.103736
2. Kale R. C., Ravi K. A review on the impact of thermal history on compacted bentonite in the context of nuclear waste management. Environmental Technology & Innovation. 2021. Vol. 23. DOI: 10.1016/j.eti.2021.101728
3. Gee G. W., Meyer P. D., Ward A. L. Nuclear waste disposal. Encyclopedia of soils in the environment. Oxford: Elsevier Ltd., 2005. pp. 56–63.
4. Kim M.-J., Lee S.-R., Yoon S., Jeon J.-S., Kim M.-S. Optimal initial condition of a bentonite buffer with regard to thermal behavior in a high-level radioactive waste repository. Computers and Geotechnics. 2018. Vol. 104. pp. 109–117.

5. Cui C.-Q., Wang B., Zhao Y.-X., Xue L.-M. Waste mine to emerging wealth: Innovative solutions for abandoned underground coal mine reutilization on a waste management level. Journal of Cleaner Production. 2020. Vol. 252. DOI: 10.1016/j.jclepro.2019.119748
6. Chen T., Yang N. Study on the underground storage of hazardous waste of the micro-seismic signal based on the S-transform time-frequency analysis. Procedia Environmental Sciences. 2016. Vol. 31. pp. 426–431.
7. Chen X., Li Y., Shi Y., Yu Y., Jiang Y., Liu Y., Dong J. Tightness and stability evaluation of salt cavern underground storage with a new fluid–solid coupling seepage model. Journal of Petroleum Science and Engineering. 2021. Vol. 202. DOI: 10.1016/j.petrol.2021.108475
8. Hacioğlu F., Özdemir T., Çavdar S., Usanmaz A. Possible use of EPDM in radioactive waste disposal: Long term low dose rate and short term high dose rate irradiation in aquatic and atmospheric environment. Radiation Physics and Chemistry. 2013. Vol. 83. pp. 122–130.
9. Foster R. I., Amphlett J. T. M., Kim K.-W., Kerry T., Lee K.-Y., Sharrad C. A. SOHIO process legacy waste treatment: Uranium recovery using ion exchange. Journal of Industrial and Engineering Chemistry. 2020. Vol. 81. pp. 144–152.
10. Wei G., Han W., Shu X., Luo F., Tang H., Chen S., Lu X. Heavy-ion irradiation effects on uranium-contaminated soil for nuclear waste. Journal of Hazardous Materials. 2021. Vol. 405. DOI: 10.1016/j.jhazmat.2020.124273
11. Álvarez-Ayuso E., Murciego A., Rodríguez M. A., Mosser-Ruck R. Cement encapsulation processes to mitigate the risks posed by different types of antimony-bearing mine waste. Journal of Cleaner Production. 2022. Vol. 372. DOI: 10.1016/J.JCLEPRO.2022.133671
12. Bolobov V. I., Plashchinsky V. A. On the assessment of energy consumption when splitting rock fragments. Obogashchenie Rud. 2023. No. 2. pp. 3–8.
13. Lavrenko S. A., Shishlyannikov D. I. Performance evaluation of heading-and-winning machines in the conditions of potash mines. Applied Sciences. 2021. Vol. 11. DOI: 10.3390/app11083444
14. Zhukov I. A., Martyushev N. V., Zyukin D. A., Azimov A. M., Karlina A. I. Modification of hydraulic hammers used in repair of metallurgical units. Metallurgist. 2023. Vol. 66. pp. 1644–1652.
15. Fiscor S. Rescuers work to free chilean miners. Engineering and Mining Journal. 2010. Vol. 211, Iss. 8. pp. 24–26.
16. Kral S. Remarkable rescue unfolds. Mining Engineering. 2010. Vol. 62, Iss. 9. p. 96.
17. Liu Z., Ni F., Wei C., Li H. Experimental and numerical investigation of roadheader for breaking rock containing predrill holes. Energy Science and Engineering. 2020. Vol. 8, Iss. 7. pp. 2511–2526.
18. Yacheykin A. I. Determination of rational designs and parameters of the executive body of large-diameter tunneling shields for the mining and geological conditions of the mines of Metrostroy St. Petersburg. Diss. for the degree of Candidate of Engineering Sciences. St. Petersburg, 2021. 135 p.
19. Gabov V. V., Nguyen Van Xuan, Zadkov D. A., Tran Duc Tho. Increasing the content of coarse fractions in the mined coal mass by a combine using paired cuts. Zapiski Gornogo Instituta. 2022. Vol. 257. pp. 764–770.
20. Urazbakhtin R. Yu., Yungmeister D. A. The results of theoretical and laboratory studies of the rescue complex for coal mines. Izvestiya Uralskogo Gosudarstvennogo Gornogo Universiteta. 2019. Iss. 3. pp. 98–103.
21. Shemyakin S. A., Shishkin E. A. Physical and mathematical model of rock destruction by a milling machine cutter. Zapiski Gornogo Instituta. 2021. Vol. 251. pp. 639–647.
22. Averin E. A., Zhabin A. B., Polyakov A. V., Linnik Y. N., Linnik V. Y. Transition between relieved and unrelieved modes when cutting rocks with conical picks. Zapiski Gornogo Instituta. 2021. Vol. 249. pp. 329–333.
23. Linh N. K., Chien D. V., Gabov V. V., Giap D. V., Tien P. V. Study of the influence of structure and parameters of loading and transporting devices of a cleaning combine on the efficiency of coal loading. Journal of Physics: Conference Series. 2019. Vol. 1384. DOI: 10.1088/1742-6596/1384/1/012036
24. Yasar S., Yilmaz A. O. Vertical rock cutting rig (VRCR) suggested for performance prediction of roadheaders. International Journal of Mining, Reclamation and Environment. 2019. Vol. 33, Iss. 3. pp. 149–168.
25. Kahraman S., Sercan Aloglu A., Aydin B., Saygin E. The needle penetration index to estimate the performance of an axial type roadheader used in a coal mine. Geomechanics and Geophysics for Geo-Energy and Geo-Resources. 2019. Vol. 5, Iss. 1. pp. 37–45.
26. Gamez-Montero P. J., Salazar E., Castilla R., Freire J., Khamashta M., Codina E. Misalignment effects on the load capacity of a hydraulic cylinder. International Journal of Mechanical Sciences. 2009. Vol. 51. pp. 105–113.
27. Yong X., Yang J., Shang J., Xie H. Design and optimization of a new kind of hydraulic cylinder for mobile robots. Proc. of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2015. Vol. 229, Iss. 18. DOI: 10.1177/0954406215570106
28. Zhang M., Lyu F., Fu S., Cai X., Zong K., Wu M. Study on the pitch angle control of a robotized hydraulic drive roadheader using different control methods. Journal of Mechanical Science and Technology. 2018. Vol. 32, Iss. 10. pp. 4893–4901.
29. Rybak J., Khayrutdinov M. M., Kuziev D. A., Kongar-Syuryun Ch. B., Babyr N. V. Prediction of the geomechanical state of the rock mass when mining salt deposits with stowing. Zapiski Gornogo Instituta. 2022. Vol. 253. pp. 61–70.
30. Nguyen Tai Tien, Karasev M. A. Optimization of geometry design of quasi-rectangular section tunnel by the force criterion. Gornyi Informatsionno-analiticheskiy Byulleten'. 2021. No. 6. pp. 59–71.
31. Zhang L., Tian M., Song J., He Y., Feng J., Liu X. Hardness recognition method of roadheader's cutting rock wall based on multi-source data fusion. Zhendong yu Chongji / Journal of Vibration and Shock. 2020. Vol. 39, No. 13. pp. 7–15.
32. Karasev M. A., Tien Tai Nguyen. Method for predicting the stress state of the lining of under-ground structures of quasi-rectangular and arched forms. Zapiski Gornogo Instituta. 2022. Vol. 257. pp. 807–821.
33. Gospodarikov A. P., Trofimov A. V., Kirkin A. P. Evaluation of deformation characteristics of brittle rocks beyond the limit of strength in the mode of uniaxial servohydraulic loading. Zapiski Gornogo Instituta. 2022. Vol. 256. pp. 539–548.
34. Korshunov V. A., Pavlovich A. A., Bazhukov A. A. Evaluation of the shear strength of rocks by cracks based on the results of testing samples with spherical indentors. Zapiski Gornogo Instituta. 2023. Vol. 262. pp. 606–618.
35. Protosenya А. G., Alekseev А. V., Verbilo P. E. Prediction of the stress-strain state and stability of tunnel face at the intersection of disturbed zones of the soil mass. Zapiski Gornogo Instituta. 2022. Vol. 254. pp. 252–260.
36. Kazanin O. I., Ilinets A. A. Ensuring the excavation workings stability when developing excavation sites of flatlying coal seams by three workings. Zapiski Gornogo Instituta. 2022. Vol. 253. pp. 41–48.

Language of full-text русский
Полный текст статьи Получить
Назад