Журналы →  Tsvetnye Metally →  2024 →  №2 →  Назад

MATERIALS SCIENCE
Название A relationship between abnormal electrical properties in non-ferrous alloys and phase equilibrium diagrams
DOI 10.17580/tsm.2024.02.06
Автор Shakhnazarov K. Yu., Vologzhanina S. A., Khuznakhmetov R. M.
Информация об авторе

Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russia
K. Yu. Shakhnazarov, Professor at the Department of Materials Science and Technology of Art Products, Doctor of Technical Sciences, e-mail: Shakhnazarov_KYu@pers.spmi.ru
S. A. Vologzhanina, Professor at the Department of Materials Science and Technology of Art Products, Doctor of Technical Sciences, e-mail: vologzhanina_sa@pers.spmi.ru
R. M. Khuznakhmetov, Postgraduate Student of the Department of Materials Science and Technology of Art Products, e-mail: s225045@stud.spmi.ru

Реферат

Given the fact that identifying the cause-and-effect mechanisms behind abnormal properties in materials is of enormous importance for science and practical sphere, the authors of this paper propose an approach that allows to establish the relationship between the changing electrical properties and the nanoparticles of intermediate phases forming in non-ferrous metal alloys. A KΔ criterion is proposed that allows to evaluate a possible formation of nanoparticles of chemical compounds (intermediate phases) which significantly influence transformations in the fine structure. This helps relate the extremums on the curves of electrical properties (such as electric conductivity, specific electrical resistance, electrical resistivity, temperature coefficient of electrical resistance, thermoelectromotive force), which can hardly be explained, to the phase equilibrium diagrams of commercial non-ferrous alloys. It becomes possible to consider the phase equilibrium diagram taking into account the developed KΔ criterion, which allows to predict the formation of nanoparticles of intermediate phases and, as a consequence, changes in electrical properties in the systems (Pt – Ag, Al – Fe, Bi – Pb, Al – Zr, Cu – Zn) of non-ferrous alloys. The developed KΔ criterion enables to determine the causes of: maximum electrical resistivity and its temperature coefficient of silver-platinum alloys; unchangeable electrical resistivity in the concentration range (24–32%(at.) Fe) of aluminium-iron alloys; the spike in conductivity and absolute maximum of thermoelectromotive force of bismuth-lead alloys; maximum specific resisti vity of aluminium-zirconium alloys; unchangeable conductivity and temperature coefficient of electrical resistance of copper-zinc alloys.

Ключевые слова Nanoparticles of intermediate phases, electrical conductivity, electrical resistance, temperature coefficient of electrical resistance, thermoelectromotive force
Библиографический список

1. Sizyakov V. M., Polyakov P. V., Bazhin V. Yu. Production of aluminium and aluminium alloys in Russia: Current trends and strategic objectives. Tsvetnye Metally. 2022. No. 7. pp. 16–23.
2. Bazhin V. Y., Savchenkov S. A., Gordevnin N. A. Investigation of the ytterbium reduction process in the synthesis of Al – Yb master alloys for the modification of aluminum alloys. Non-Ferrous Metals. 2022. No. 2. pp. 65–72.
3. Brichkin V. N., Vorobiev A. G., Bazhin V. Yu. Mining Institute’s metallurgists: a tradition serving the Country, science and production industry. Tsvetnye Metally. 2020. No. 10. pp. 4–13.
4. Kurnakov N. S. Selected papers: In 3 volumes. Vol. 2. Moscow : Izdatelstvo AN SSSR, 1961. 612 p.
5. Phase equilibrium diagrams of binary metallic systems. Handbook : In 3 volumes. Vol. 1. Ed. by N. P. Lyakishev. Moscow : Mashinostroenie, 1996. 992 p.
6. Bazhin V. Yu. A contemporary view on anomalies in the metal groups of Mendeleev’s Periodic System. Journal of Mining Institute. 2020. Vol. 239. pp. 520–527.
7. Syrkov A. G., Prokopchuk N. R., Vorobiev A. G., Brichkin V. N. Academician N. S. Kurnakov as the founder of physico-chemical analysis – the scientific base for the development of new metal alloys and materials. Tsvetnye Metally. 2021. No. 1. pp. 77–83.
8. Parshin A. M., Tikhonov A. N., Bondarenko G. G., Kamyshanchenko N. V. et al. Selected writings on and separate problems of metallurgy. Ed. by A. M. Par shin, A. N. Tikhonov. St Petersburg : Izdatelstvo SPbGTU, 1998. 304 p.
9. Shank F. A. Structures of binary alloys. Moscow : Metallurgiya, 1973. 759 p.
10. Wang Z., Shiyao C., Luo Q. et al. Light-weight refractory high-entropy alloys: a comprehensive review. Journal of Materials Science & Technology. 2023. Vol. 151. pp. 41–65.
11. Wang M., Xu Y., Zhang X., Qi P. T. et al. Surface microstructure evolution mechanism of WC – Co hard alloy treated by high current pulsed electron beam. Vacuum. 2022. Vol. 202. 111139.
12. Shichalin O. O., Buravlev I., Papynov E. K ., Golub A. et al . Compar ative study of WC-based hard alloys fabrication via spark plasma sintering using Co, Fe, Ni, Cr, and Ti binders. International Journal of Refractory Metals and Hard Materials. 2022. Vol. 102. 105725.
13. Fengyan Li, Xiangmin Z., Jing Z. et al. Research on generic technology identification issues in non-ferrous metal industry. Journal of Physics Conference Series. 2021. Vol. 1955. 012093. DOI: 10.1088/1742-6596/1955/1/012093
14. Gordeeva Yu. I., Abkaryan A. K. et al. Developing efficient techniques to control the structure and properties of nanoparticle-doped hard-alloy compo sites. Zhurnal Sibirskogo federalnogo universiteta. 2014. Vol. 7, No. 3. pp. 270–289.
15. Bazhin V. Yu., Gorlenkov D. V., Povarov V. G., Vedernikov V. V. Composition, structure and properties of the last silver rubles of the Russian Empire in 1895–1915: continuation of the Petrine traditions of coinage. Tsvetnye Metally. 2022. No. 7. pp. 112–124.
16. Dong P., Meng C., Yan Y., Zhang B. et al. Ag–Pt bimetallic composite supported on defective C3Nx nanosheets for plasmon hot electron-mediated photocatalytic H2 evolution. International Journal of Hydrogen Energy. 2023. Vol. 48.
17. Novikova O. A. A study of the silver-platinum system. Zhurnal neorganicheskoy khimii. 1957. Vol. 11. pp. 1840–1847.

18. Vol A. Ya. Structure and properties of binary metallic systems : In 4 volumes. Vol. 1. Moscow : Gosudarstvennoe izdatelstvo fiziko-matematicheskoy literatury, 1959. 756 p.
19. Cordero-Santiago J. P., Crespo-Sosa A. Formation of Ag/Pt bimetallic nanoparticles obtained by ion implantation in α-Al2O3Photonics and Nanostructures-Fundamentals and Applications. 2022. Vol. 51. 101051.

20. Takeuchi Y., Lee H.-J., Dao ATN, Kasai H. et al. Formation of multishell Au@ Ag@ Pt nanoparticles by coreduction method: a microscopic study. Materials Today Chemistry. 2021. Vol. 21. 100515.
21. Grishchenko N. A., Sidelnikov S. B., Gubanov I. Yu. et al. Mechanical properties of aluminium alloys : Monograph. Krasnoyarsk : Sibirskiy federalnyi universitet, 2012. 196 p.
22. Kurganov Yu. A., Shcherbakov S. P. Effect of the discrete additive of aluminium oxide on the structure and properties of aluminium alloy. Journal of Mining Institute. 2020. Vol. 228. pp. 717–721.
23. Shimosaka D., Ueno M. Effects of Si and Zr addition on strength and recrystallization behavior of Al – Mn alloy fin stocks for automotive heat exchanger. MATEC Web of Conferences. 2020. Vol. 326. DOI: 10.1051/matecconf/202032605006
24. Školáková A., Pinc J., Novák P. The preferential formation of Ni2Al3, Fe2Al5, and Ti2Al5 phases in aluminide systems. Materials Chemistry and Physics. 2022. Vol. 280. 125859.
25. Dubiel S. M., Gondek L., Zienert T., Zukro wski J. Mössbauer spectroscopic and XRD studies of two η-Fe2Al5 intermetallics. Intermetallics. 2021. Vol. 135. 107217.
26. Li J., Chen H. The physical characteristics of tetragonal FeAl2 under pressure. Vacuum. 2022. Vol. 205. 111472.
27. Liu W., Ren X., Shi Y., Niu Y. et al. The effective mass, vibration and electromagnetic properties of tetragonal iron aluminide FeAl2Ceramics International. 2021. Vol. 47, No. 2. pp. 1766–1771.
28. Zhang N., Hu Q. D., Ding Z., Lu W. et al. 3D morphological evolution and growth mechanism of proeutectic FeAl3 phases formed at Al/Fe interface under different cooling rates. Journal of Materials Science & Technology. 2022. Vol. 116. pp. 83–93.
29. Wang H. J., Su X. P., Sun S. P., Wang J. H. et al. First-principles calculations to investigate the anisotropic elasticity and thermodynamic properties of FeAl3 under pressure effect. Results in Physics. 2021. Vol. 26. 104361.
30. Gao H., Feng W., Wang Y., Gu J. et al. Structural and compositional evolution of Al3(Zr, Y) precipitates in Al – Zr – Y alloy. Materials Characterization. 2016. Vol. 121. pp. 195–198. DOI: 10.1016/j.matchar.2016.10.012
31. Savchenkov S. A., Bazhin V. Y., Brichkin V. N. Thermal analysis of the fabrication of magnesium master alloys containing yttrium and zinc. Russian Metallurgy (Metally). 2019. No. 8. pp. 207–218.
32. Aleksandrova T. N., Chanturiya A. V., Kuznetsov V. V. Mineralogical and technological features and patterns of selective disintegration of ferruginous quartzites of the Mikhailovskoye deposit. Journal of Mining Institute. 2022. Vol. 256. pp. 517–526. DOI: 10.31897/PMI.2022.58
33. Kumar S., Das A. K. Recent advancements in TIG cladding process on Non-ferrous Alloys: A Review. Dave H. K., Dixit U. S., Nedelcu D. Recent Advances in Manufacturing Processes and Systems. Singapore : Springer, 2022. DOI: 10.1007/978-981-16-7787-8_66
34. Ozan Coban, Ercan Acma M. Combustion synthesis of nanostructured non-ferrous alloys and ceramic powders. Advances in Combustion Synthesis and Technology. 2022. pp. 34–65. DOI: 10.2174/9789815050448122010006
35. Revina A. A., Oksentyuk E. V., Fenin A. A. Synthesis and properties of zinc nanoparticles: the role and prospects of radiation chemistry in the development of modern nanotechnology. Protection of Metals. 2007. Vol. 43, No. 6. pp. 554–559. DOI: 10.1134/S0033173207060069
36. Pryakhin E. I., Sharonov N. I. Basic provisions and problems related to the electron-beam welding technology in application to the fabrication of structures out of aluminium-magnesium alloys. Journal of Mining Institute. 2020. Vol. 229. pp. 84–91.
37. Huang D. et al. New experimental studies on the phase relationship of the Bi–Pb–Te system. Materials & Design. 2022. Vol. 224. 111384.
38. Amer S. M., Barkov R. Yu., Pozdnyakov A. V. Effect of impurities on the phase composition and properties of the wrought Al – 6% Сr – 4,05%Er alloy. Fizika metallov i metallovedenie. 2020. Vol. 121, No. 5. pp. 550–554.
39. Wei K. et al. In-situ electrochemical study of plasma electrolytic oxidation treated Zr3Al based alloy in 300o C/14 MPa lithium borate buffer solution. Thin Solid Films. 2020. Vol. 707. 138066.
40. Kapidžiс A., Beloševiс-Сavor J., Koteski V. Zirconium aluminides studied with first principles calculations: Hyperfine interactions and site preference of dopants. Journal of Solid State Chemistry. 2022. Vol. 310. 123042.
41. Srikanth M. et al. A review of the latest developments in the field of refractory high-entropy alloys. Crystals. 2021. Vol. 11, No. 6. 612.
42. López-Arenal J. et al. Scratch, fretting, and sliding wear of a ZrB2–hardened Zr3Al2 intermetallic–ceramic composite. Journal of Materials Research and Technology. 2023. Vol. 23, Iss. 1.
43. López-Arenal J. et al. Powder-metallurgy fabrication of ZrB2–hardened Zr3Al2 intermetallic composites by high-energy ball-milling and reactive spark-plasma sintering. Journal of Materials Research and Technology. 2022. Vol. 21. pp. 617–626.
44. Samaei A., Chaudhuri S. Role of zirconium conversion coating in corrosion performance of aluminum alloys: An integrated first-principles and multiphysics modeling approach. Electrochimica Acta. 2022. Vol. 433. 141195.
45. Jiang X. J. et al. Microstructure and mechanical properties of ZrAl binary alloys. Journal of Alloys and Compounds. 2019. Vol. 811. 152068.
46. Huang Y. et al. Microstructure and mechanical properties of the (TiZrV) 100-xAlx medium-entropy alloys. Journal of Materials Research and Technology. 2023. Vol. 23, Iss. 1. pp. 2824–2835.
47. Kornilov I. I. The physics and chemistry behind heat resistance of alloys. Moscow : Izdatelstvo AN SSSR, 1961. 516 p.
48. Savitskiy E. M. Effect of temperature on the mechanical properties of metals and alloys. Moscow : Izdatelstvo AN SSSR, 1957. 295 p.

Полный текст статьи A relationship between abnormal electrical properties in non-ferrous alloys and phase equilibrium diagrams
Назад