Реферат |
There is a growing interest to laser welding — a technique that combines versatility, localized heat and high welding speed, resulting in joints with a relatively high quality and a lower number of defects. Therefore, optimization of laser welding parameters is required, as well as further research into the effect of laser processing on the quality, structure and properties of materials. The aim of this research is to understand the applicability of the laser welding technique for joining together hot-rolled sheets of Al – 3 Ca – 0.5 Cu – 0.5 Mn alloy. The authors analyzed the structure and properties of a model Al – 3 Ca – 0.5 Cu – 0.5 Mn alloy. It is shown that this composition contributes to the formation of a fine eutectic structure during casting, favorable for rolling processes. Sheets that were hot rolled at 400 оС (80% reduction rate) have a tensile strength of 227 MPa, a yield strength of 176 MPa, and an elongation of 3.8%. The obtained sheets were joined together using a robotic laser welding unit. The results of structural and mechanical studies were used to analyze the influence of the test welding parameters on the welding quality. Optimum welding parameters were selected, which are as follows: laser power — 1,200 W, welding speed — 20 mm/sec, focal length — 193 mm, argon flow rate supplied to the welding zone — 15 l/min. Application of the above welding parameters result in welded joints of high visual quality, with minimum porosity in the fusion zone, as well as a good combination of mechanical characteristics. The obtained joints have a tensile strength of 171 MPa, a yield strength of 94 MPa, and an elongation of 3.2%. Support for this research was provided under Grant No. 22-79-00179 by the Russian Science Foundation, https://rscf.ru/project/22-79-00179/. |
Библиографический список |
1. Belov N. A., Naumova E. A., Akopyan T. K. Aluminium-based eutectic alloys: New alloying systems. Moscow : “Ore and Metals” Publishing House, 2016. 256 p. 2. Belov N. A., Naumova E. A., Ilyukhin V. D., Doroshenko V. V. Structure and mechanical properties of Al – 6 % Ca – 1 % Fe alloy foundry goods, obtained by die casting. Tsvetnye Metally. 2017. No. 3. pp. 69–75. 3. Belov N., Naumova E., Akopyan T. Effect of 0.3% Sc on microstructure, phase composition and hardening of Al – Ca – Si eutectic alloys. Transactions of Nonferrous Metals Society of China. 2017. Vol. 27, Iss. 4. pp. 741–746. DOI: 10.1016/S1003-6326(17)60084-0 4. Fokin D., Matveev S., Vakhromov R., Alabin A. Effect of alloying elements on strength properties and casting properties of corrosion resistant quenchfree Al – Ca alloys. Light Metals 2022. Springer, Cham. pp. 113–118. DOI: 10.1007/978-3-030-92529-1_15 5. Akopyan T. K., Letyagin N. V., Avxentieva N. N. High-tech alloys based on Al – Ca – La(–Mn) eutectic system for casting, metal forming and selective laser melting. Non-ferrous Metals. 2020. No. 1. pp. 52–59. 6. Letyagin N. V., Musin A. F., Sichev L. S. New aluminum-calcium casting alloys based on secondary raw materials. Materials Today: Proceedings. 2021. Vol. 38, Part 4. pp. 1551–1555. DOI: 10.1016/j.matpr.2020.08.148 7. Letyagin N. V., Shurkin P. K., Nguyen Z., Koshmin A. N. Effect of thermomechanical treatment on the structure and mechanical properties of alloy Al3Ca1Cu1.5Mn. Physics of Metals and Metallography. 2021. Vol. 122, No. 8. pp. 873–879. DOI: 10.31857/S001532302108009X 8. Shurkin P. K., Letyagin N. V., Yakushkova A. I., Samoshina M. E. et al. Remarkable thermal stability of the Al – Ca – Ni – Mn alloy manufactured by laser-powder bed fusion. Materials Letters. 2021. Vol. 285. 129074. DOI: 10.1016/j.matlet.2020.129074 9. Rogachev S. O., Naumova E. A., Komissarov A. A., Vasina M. A. et al. Laser surface modification of eutectic aluminium alloys Al – 8 % Ca, Al – 10 % La, Al – 10 % Ce and Al – 6 % Ni and its effect of their structure and mechanical properties. Izvestiya vuzov. Tsvetnaya metallurgiya. 2022. Vol. 28, No. 6. pp. 58–70. DOI: 10.17073/0021-3438-2022-6-58-70 10. GOST ISO 13919-2–2017. Welding. Electron and laser-beam welded joints. Guidance on quality levels for imperfections. Part 2. Aluminium and its weldable alloys. Introduced: 03.01.2019. 11. Kashaev N., Ventzke V., Çam G. Prospects of laser beam welding and friction stir welding processes for aluminum airframe structural applications. Journal of Manufacturing Processes. 2018. Vol. 36. pp. 571–600. DOI: 10.1016/j.jmapro.2018.10.005 12. Hong K., Shin Y. C. Prospects of laser welding technology in the automotive industry: a review. Journal of Materials Processing Technology. 2017. Vol. 245. pp. 46–69. DOI: 10.1016/j.jmatprotec.2017.02.008 13. Lyukhter A. B., Shlegel A. N., Gusev D. S., Samarin S. S. Study of formation of welded joint produced by laser overlap welding of aluminum AMg2M alloy and St3 steel. Inorganic Materials: Applied Research. 2018. Vol. 9, No. 4. pp. 709–713. DOI: 10.1134/S2075113318040214 14. Jing Han, Yu Shi, Gang Zhang, Korzhyk V., Wang-yun Le. Minimizing defects and controlling the morphology of laser welded aluminum alloys using power modulation-based laser beam oscillation. Journal of Manufacturing Processes. 2022. Vol. 83. pp. 49–59. DOI: 10.1016/j.jmapro.2022.08.031 15. Cui L., Peng Z., Chang Y., He D. et al. Porosity, microstructure and mechanical property of welded joints produced by different laser welding processes in selective laser melting AlSi10Mg alloys. Optics and Laser Technology. 2022. Vol. 150. 107952. DOI: 10.1016/j.optlastec.2022.107952 16. Malikov A., Orishich A., Vitoshkin I., Karpov E., Ancharov A. Effect of post-heat treatment on microstructure and mechanical properties of laser welded Al – Cu – Mg alloy. Journal of Manufacturing Processes. 2021. Vol. 64. pp. 620–632. DOI: 10.1016/j.jmapro.2021.02.008 17. Sathish T., Sevvel P., Sudharsan P., Vijayan V. Investigation and optimization of laser welding process parameters for AA7068 aluminium alloy butt joint. Materials Today: Proceedings. 2021. Vol. 37, Part 2. pp. 1672–1677. DOI: 10.1016/j.matpr.2020.07.196 18. Beiranvand Z. M., Ghaini F. M., Moosavy H. N., Sheikhi M., Torkamany M. J. Solidification cracking susceptibility in pulsed laser welding of Al – Mg alloys. Materialia. 2017. Vol. 7. 100417. DOI: 10.2139/ssrn.3394576. 19. Han X., Yang Z., Ma Y., Shi C., Xin Z. Porosity distribution and mechanical response of laser-MIG hybrid butt welded 6082-T6 aluminum alloy joint. Optics and Laser Technology. 2020. Vol. 132. 106511. DOI: 10.1016/j.optlastec.2020.106511 20. Hu K., Muneer W., Zhang J., Zhan X. Effect of beam oscillating frequency on the microstructure and mechanical properties of dissimilar laser welding of AA2060 and AA6061 alloy. Materials Science & Engineering A. 2022. Vol. 832. 142431. DOI: 10.1016/j.msea.2021.142431 21. Chen L., Wang C., Xiong L., Zhang X., Mi G. Microstructural, porosity and mechanical properties of lap joint laser welding for 5182 and 6061 dissimilar aluminum alloys under different place configurations. Materials and Design. 2020. Vol. 191. 108625. DOI: 10.1016/j.matdes.2020.108625 22. Dimatteo V., Liverani E., Ascari A., Fortunato A. Weldability and mechanical properties of dissimilar laser welded aluminum alloys thin sheets produced by conventional rolling and Additive Manufacturing. Journal of Materials Processing Technology. 2022. Vol. 302. 117512. DOI: 10.1016/j.jmatprotec.2022.117512 23. GOST 1497–84. Metals. Methods of tension test. Introduced: 01.01.1986. 24. GOST 6996–66. Welded joints. Methods of mechanical properties determination. Introduced: 01.01.1967. 25. Naumova E., Doroshenko V., Barykin M., Sviridova T. et al. Hypereutectic Al – Ca – Mn – (Ni) alloys as natural eutectic composites. Metals. 2021. Vol. 11. 890. DOI: 10.3390/met11060890 26. Belov N. A., Naumova E. A., Doroshenko V. V., Korotkova N. O., Avxentieva N. N. Determination of the parameters of a peritectic reaction that occurred in the Al-rich region of the Al – Ca – Mn system. Physics of Metals and Metallography. 2022. Vol. 123. pp. 759–767. DOI: 10.1134/S0031918X22060047 27. Xu J., Rong Y., Huang Y., Wang P., Wang C. Key-hole induced porosity formation during laser welding. Journal of Materials Processing Technology. 2018. Vol. 252. pp. 720–727. DOI: 10.1016/j.jmatprotec.2017.10.038 28. Fetzer F., Hagenlocher C., Weber R., Graf T. Geometry and stability of the capillary during deep-penetration laser welding of AlMgSi at high feed rates. Optics & Laser Technology. 2021. Vol. 133. 106562. DOI: 10.1016/j.optlastec.2020.106562 29. Norris J. T., Robino C. V., Hirschfeld D. A., Perricone M. J. Effects of laser parameters on porosity formation: investigating millimeter scale continuous wave Nd:YAG laser welds. Welding Journal. 2011. Vol. 17. pp. 431–437. 30. Shurkin P. K., Karpova Zh. A., Latypov R. A., Musin A. F. Properties of welded joints of the Al – Zn – Mg – Ca alloy doped by microadditivies of zirconium and scandium. Tsvetnye Metally. 2021. No. 2. pp. 84–92. 31. Karpova Zh. A., Shurkin P. K., Sivtsov K. I., Laptev I. N. Processability and structure formation of the Al – Zn – Mg – Ca – Fe – Zr – Sc alloy upon hot rolling and TIG welding. Russian Journal of Non-Ferrous Metals. 2021. Vol. 62. pp. 431–440. DOI: 10.3103/S106782122104009X 32. Akopyan T. K., Letyagin N. V., Sviridova T. A., Korotkova N. O., Prosviryakov A. S. New casting alloys based on the Al + Al4(Ca, La) eutectic. JOM. 2020. Vol. 72. pp. 3779–3786. DOI: 10.1007/s11837-020-04340-z |