Название |
Adjustment of the mode of loading
raw materials into a blast furnace when increasing their equivalent size |
Информация об авторе |
Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia
A. S. Kharchenko, Dr. Eng., Associate Prof., Head of the Dept. of Metallurgy and Chemical Technologies, e-mail: as.mgtu@mail.ru S. K. Sibagatullin, Dr. Eng., Prof., Dept. of Metallurgy and Chemical Technologies, e-mail: 10tks@mail.ru E. O. Kharchenko, Cand. Eng., Assistant, Dept. of Metallurgy and Chemical Technologies, e-mail: eo.mgtu@mail.ru
Magnitogorsk Iron and Steel Works, Magnitogorsk, Russia V. A. Beginyuk, Leading Specialist of the Technology Group |
Реферат |
In the laboratory of the Nosov Magnitogorsk State Technical University, the change in the internal and external angles of the agglomerate slope containing 6.6 and 6.3 % of the 0–5 mm fraction when feeding along an inclined steel sheet located at the angle of 500 to the vertical, which simulated the movement of materials from the chute to the peripheral zone of the BF top, have been determined. The surface equivalent size of the agglomerate was 11.4 and 11.7 mm, which corresponded to the baseline and experimental periods when conducting research at the blast furnace of Magnitogorsk Iron and Steel Works (MMK). An increase in particle size by 0.3 mm was accompanied by an increase in the internal and external angles of slope by 0.15 and 0.33 %, respectively. During research on a MMK`s blast furnace, equipped with a chute loading device, the advantage of iron ore raw materials with an equivalent particle size of 11.7 mm compared to11.4 mm was realized. To do this, by adjusting the loading mode of raw materials, its content in the charge coming from the stations of the chute angular positions Nos. 9–11 was reduced on average from 100 to 96.4 % with an increase in its share at stations Nos. 6–8 from 43.7 to 45.4 % . The fill level was set to 1.4 m instead of 1.53 m. Were achieved a reduction in the coefficient of resistance of the charge to the gas flow movement in the furnace`s upper part by 3.0 %, an increase in the blast intensity by 1.26 %, an increase in the productivity of cast iron by 54 tons/day and a decrease in the specific coke consumption by 2.4 kg/t of cast iron. |
Библиографический список |
1. Dmitriev A. N., Zolotykh M. O., Vitkina G. Yu. Improvement of blast furnace production using digital technologies. Chernaya metallurgiya. Byulleten nauchno-tekhnicheskoy i ekonomicheskoy informatsii. 2023. No. 6. pp. 455–464. 2. Vinogradov E. N., Kalko A. A., Volkov E. A. et. al. Improvement of smelting technology in the Severstal blast furnace production. Stal. 2016. No. 1. pp. 16–21. 3. Vitkina G. Yu., Dmitriev A. N., Alektorov R. V. Study of main metallurgical characteristics of iron ore materials (sinter and pellets). In the collection: Industrial production and metallurgy. Yekaterinburg, 2020. pp. 132–137. 4. Heikkila Anne M., Koskela Aki M., Iljana Mikko O., Lin Rongshan et аl. Coke gasification in blast furnace shaft conditions with Н2 and Н2О containing atmospheres. Steel Research International. 2021. Vol. 92. Iss. 3. 2000456. 5. Dmitriev A. N. Formation of coke quality by changing the coal charge composition for coking, the influence of coke quality on its consumption in blast furnace and productivity. Chernaya metallurgiya. Byulleten nauchno-tekhnicheskoy i ekonomicheskoy informatsii. 2018. No. 4. pp. 40–45. 6. Chen-chen Lan, Shu-hui Zhang, Xiao-jie Liu, Ran Liu, Qing Lyu. Gasificatin behafiors of coke in a blast furnace with and without H2. ISIJ International. 2021. Vol. 61. Iss. 1. pp. 158–166. DOI: 10.2355/isijinternational.ISIJINT-2020-372 7. Huatao Z., Vinghua Z., Ping D. et al. Uneven distribution of burden materials at blast furnace top in bell-less top with parallel bunkers. ISIJ International. 2012. Vol. 52, Iss. 12. pp. 2177–2185. 8. Tovarovsky I. G. Predictive assessment of the influence of the charge materials distribution along the furnace mouth`s radius on processes and performance of blast furnace smelting. Metallurg. 2014. No. 8. pp. 46–52. 9. Jiménez J., Mochón J., de Ayala J. S. Mathematical model of gas flow distribution in a scale model of a blast furnace shaft. ISIJ International. 2004. Vol. 44, Iss. 3. pp. 518–526. 10. Babarykin N. N. Theory and technology of the blast furnace process : textbook. Magnitogorsk : Izdatelskiy tsentr MGTU imeni G. I. Nosova, 2009. 154 p. 11. Bahgat M., Abdel Halim K. S., El-Kelesh H. A., Nasr M. I. Blast furnace operating conditions manipulation for reducing coke consumption and CO2 emission. Steel Research International. 2012. Vol. 83. Iss. 7. pp. 686–694. 12. Tarasov P. V. Distribution of materials and gases around the blast furnace circumference. Chernaya metallurgiya. Byulleten nauchno-tekhnicheskoy i ekonomicheskoy informatsii. 2007. No. 5. pp. 17–22. 13. Sibagatullin S. K., Kharchenko A. S., Logachev G. N. The rational mode of nut coke charging into the blast furnace by compact trough-type charging device. The International Journal of Advanced Manufacturing Technology. 2016. Vol. 86. Iss. 1-4. pp. 531–537. 14. Park T. Ju., Ko K. H., Lee J. H. et al. Coke size degradation and its reactivity across the tuyere regions in a large-scale blast furnace of hyundai steel. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science. 2020. Vol. 51, Iss. 3. pp. 1282–1288. 15. Titov V. N., Ivleva L. S., Pishikin A. A. Use of fine fractions of sinter and coke under conditions of intensive operation of blast furnaces. Chernaya metallurgiya. Byulleten nauchnotekhnicheskoy i ekonomicheskoy informatsii. 2017. No. 5. pp. 28–33. 16. Kharchenko A. S., Pavlov A. V., Yudina S. V., Sibagatullin S. K. Influence of coke size on the performance of a blast furnace equipped with a cone loading device under the conditions of Magnitogorsk Iron & Steel Works. Chernye Metally. 2023. No. 12. pp. 20–24. 17. Mozharenko N. M., Gladkov N. A., Nesterov A. S. et al. On the issue of the quality of iron ore materials. Stal. 1997. No. 8. pp. 3–5. 18. Chukin D. M., Gushchin D. N., Kotyshev V. E., Frolov Yu. A. Scientific and technical support for mastering the work of sinter plant No. 5 of Magnitogorsk Iron & Steel Works. Chernaya metallurgiya. Byulleten nauchno-tekhnicheskoy i ekonomicheskoy informatsii. 2022. Vol. 78. No. 12. pp. 1038–1048. 19. Sibagatullin S. K., Kharchenko A. S., Sysoev V. I., Polinov A. A. Study of physicochemical properties of high-quality sinter from MMK`s factory No. 5 during reduction in a hydrogen medium. Chernye Metally. 2022. No. 3. pp. 4–9. 20. Frolov Yu. A., Chukin D. M., Polinov A. A., Emelyanov L. G., Kotyshev V. E. Study of sintering process of the sintering charge in a dense and mechanically loosened layer on sintering machines of PJSC MMK`s sinter plant No. 5. Metallurg. 2022. No. 3. pp. 8–12. 21. Sibagatullin S.K. Formation of a charge layer in the blast furnace top space : tutorial. Magnitogorsk : Izdatelstvo MGTU imeni G. I. Nosova, 2014. 188 p. 22. Kharchenko A. S. Regularities of the flow of charge components by size from the BLT hopper into the furnace top space depending on loading conditions. Vestnik MGTU imeni G. I. Nosova. 2018. Vol. 16. No. 3. pp. 46–56. 23. Stefanovich M. A., Sibagatullin S. K., Gushchin D. N. Patterns of charge and gas movement in a blast furnace. Magnitogorsk : Izdatelstvo MGTU imeni G. I. Nosova, 2011. 161 p. 24. Pavlov A. V., Spirin N. A., Gurin I. A., Lavrov V. V. et al. Information modeling system for on-line prediction of composition and properties of final slag in a blast furnace. Izvestiya vuzov. Chernaya metallurgiya. 2023. Vol. 66. No. 2. pp. 244–252. 25. Pavlov A. V., Onorin O. P., Spirin N. A., Lavrov V. V., Gurin I. A. Some issues of technology, control and diagnostics of blast furnace smelting : monograph. Yekaterinburg, 2023. 282 p. 26. Zagaynov S. A., Smirnov L. A., Zazhigaev P. A., Mironov K. V., Forshev A. A. Improvement of the technology for processing vanadium-containing titanomagnetites. Stal. 2020. No. 12. pp. 11–15. |