Журналы →  Tsvetnye Metally →  2024 →  №6 →  Назад

HEAVY NON-FERROUS METALS
Название Study on the technology of direct atmospheric leaching of a zinc concentrate
DOI 10.17580/tsm.2024.06.02
Автор Lyakh S. I., Fomenko I. V., Varganov M. S., Zagrebin S. A.
Информация об авторе

LLC Research Center Hydrometallurgy, Saint Petersburg, Russia

S. I. Lyakh, Chief Engineer, Candidate of Technical Sciences, e-mail: lyakh-s@gidrometall.ru
I. V. Fomenko, General Director, Candidate of Technical Sciences, e-mail: fomenko-i@gidrometall.ru

 

JSC Chelyabinsk Zinc Plant, Chelyabinsk, Russia
M. S. Varganov, Head of the Technical Administration, e-mail: mkv@zinc.ru
S. A. Zagrebin, Deputy Head of the Technical Administration, Candidate of Chemical Sciences, e-mail: saz@zinc.ru

Реферат

The article presents the results of laboratory studies on the technology of direct atmospheric leaching of the sample of the Russian zinc concentrate, containing, %: 49.1 Zn; 32.8 S; 8.4 Fe; 2.5 Pb; 2.3 Cu; 1.8 SiO2. The results describe two-stage atmospheric leaching of the concentrate with a sulfurous solution similar to a composition of the spent zinc electrolyte (170 g/l H2SO4 and 50 g/l Zn). Leaching of the zinc concentrate in atmospheric conditions (temperature is 95–100 oC) is shown as highly efficient in transferring up to 98–99 % Zn and 90–95 % Cu to a liquid phase of sludge. It has been determined that the amount of iron, precipitating to a liquid phase of sludge during oxidation of iron-containing sulfide minerals (pyrrhotite, chalcopyrite and partial pyrite) is enough for a deep oxidation of sphalerite and zinc leaching. In conditions of atmospheric leaching, the degree of oxidation of sulphide sulphur achieved 90±5 %, and the rate of conversion of sulphide sulphur to elemental sulphur was 80±5 %. The article presents the results of laboratory studies on the operation of refining of a production solution after the first state of atmospheric lea ching from hydrolysable impurities (Fe, As and Sb) before electrolytic deposition of zinc. Key parameters are determined to influence hydrolytic refining of the solution. The studies showed a rationale for a technological need for the deposition of copper from the solution as a copper-chloric cake before hydrolytic refining to minimize its losses with a waste hydrated cake.

Ключевые слова Zinc, iron, copper, sphalerite, elemental sulphur, atmospheric leaching, hydrolytic refining
Библиографический список

1. Kania H., S aternus M. Evaluation and current state of primary and secondary zinc production. Applied Sciences. 2023. Vol. 13, No. 3. 2003. DOI: 10.3390/app13032003
2. de Souza A. D., Pina P. S., Leão V. A. Bioleaching and chemical leaching as an integrated process in the zinc industry. Minerals Engineering. 2007. Vol. 20, No. 6. pp. 591–599. DOI: 10.1016/j.mineng.2006.12.014
3. Berdiyarov B. , Matkarimov S. Method for oxidative roasting of sulfide zinc concentrates in an air oxygen stream in fluidized bed furnaces. IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2023. Vol. 1142, No. 1. 012035. DOI: 10.1088/1755-1315/1142/1/012035
4. Panshin A. M. , Zatonskiy A. V., Kozlov P. A., Kondratyuk A. A., Terentev V. M. Development of roasting process of fine dispersing zinc concentrates of the Ural deposits on JSC Chelyabinsk Zinc Plant. Tsvetnye Metally. 2010. No. 5. pp. 34–37.
5. Panshin A. M., Shakirzyanov R. M., Izbrekht P. A., Zatonskiy A. V. Basic ways of improvement of zinc production at JSC Chelyabinsk Zinc Plant. Tsvetnye Metally. 2015. No. 5. pp. 19–21.
6. Svens K. Direct leaching alternatives for zinc concentrates. Chen T. T. Honorary Symposium on Hydrometallurgy, Electrometallurgy and Materials Characterization, 1st ed.; Shijie W., Dutrizac J. E., Free M. L., Hwang J. Y., Kim D., Eds. 2012. pp. 191–206. DOI: 10.1002/9781118364833.ch17
7. Shpaer V. M., Kal ashnikova M. I. Autoclave leaching of low-quality zinc concentrate. Tsvetnye Metally. 2010. No. 5. pp. 23–27.
8. Gu Y. et al. Press ure acid leaching of zinc sulfide concentrate. Transactions of Nonferrous Metals Society of China. 2010. Vol. 20. pp. s136–s140. DOI: 10.1016/S1003-6326(10)60028-3
9. Svens K., Kerstiens B., Runkel M. Recent experiences with modern zinc processing technology. Erzmetall. 2003. Vol. 56, No. 2. pp. 94–103.
10. Lehtinen L., Takala H. Atmospheric zinc concentrate leaching technology of Outokumpu. Lead & Zinc’05. Proceedings of the International Symposium on Lead and Zinc Processing. Kyoto, Japan, 17–19 October 2005. pp. 803–816.

11. Haakana T., Saxén B., L ehtinen L., Takala H. et al. Outotec direct leaching application in China. Journal of the Southern African Institute of Mining and Metallurgy. 2008. Vol. 108, No. 5. pp. 245–251.
12. Santos S. M. C., Ismael M. R. C., Correia M. J. N., Reis M. T. A. et al. Hydrometallurgical treatment of a zinc concentrate by atmospheric direct leach process. Proceedings of the European Congress of Chemical Engineering. Copenhagen, Denmark, 16–20 September 2007. pp. 16–20.
13. Xu Z., Jiang Q., Wang C. Atmospheric oxygen-rich direct leaching behavior of zinc sulphide concentrate. Transactions of Nonferrous Metals Society of China. 2013. Vol. 23, No. 12. pp. 3780–3787. DOI: 10.1016/S1003-6326(13)62929-5
14. Kolmachikhina E. B., Ryzhkova E. A., Dmitrieva D. V., Vakula K. A., Mokretsov M. A. Study of lignosulfonate, anionic surfactants and their mixture effect on zinc concentrate pressure leaching. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2018. Vol. 22, No. 8. pp. 143–150.
15. Picazo-Rodríguez N. G. et al. Direct acid leaching of sphalerite: An approach comparative and kinetics analysis. Minerals. 2020. Vol. 10, No. 4. 359. DOI: 10.3390/min10040359
16. Jorjani E., Ghahreman A. Chall enges with elemental sulfur removal during the leaching of copper and zinc sulfides, and from the residues; a review. Hydrometallurgy. 2017. Vol. 171. pp. 333–343. DOI: 10.1016/j.hydromet.2017.06.011
17. Sadeghi N., Moghaddam J., Ilkhc hi M. O. Determination of effective parameters in pilot plant scale direct leaching of a zinc sulfide concentrate. Physicochem. Probl. Miner. Process. 2017. Vol. 53, No. 1. pp. 601–616. DOI: 10.5277/ppmp170147
18. Kazanbaev L. A., Kozlov P. A., Kolesnikov A. V., Kondratyuk A. A., Kuteynikov V. N. On the issue of iron conversion in processes of leaching of sulfide zinc materials under atmospheric conditions. Tsvetnye Metally. 2005. No. 5-6. pp. 20–24.
19. Mirzoev P., Bodnarchuk T. Sulfate-balance control strategy at the Flin Flon zinc plant. COM 2015. The Conference of Metallurgists. Canadian Institute of Mining, Metallurgy and Petroleum. 2015. pp. 1–16.
20. Sadykov S. B. Autoclave processing of low-grade zinc concentrates. Yekaterinburg : UrO RAN, 2006. 581 p.
21. Gordeev D. V., Fomenko I. V., Shneerson Ya. M., Petrov G. V. Processing of carbonaceous gold-containing concentrates by autoclave oxidation with the addition of nitric acid as a secondary oxidizer. Obogashchenie Rud. 2023. No. 5. pp. 18–24.
22. Gordeev D. V., Petrov G. V., Khasano v A. V., Severinova O. V. Review of modern processing technologies of refractory gold ores and concentrates with use of nitric acid. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2022. Vol. 333, No. 1. pp. 214–224. DOI: 10.18799/24131830/2022/1/3228

Language of full-text русский
Полный текст статьи Получить
Назад