Журналы →  CIS Iron and Steel Review →  2024 →  №1 →  Назад

Rolling
Название Review of scientific-applied research and industrial application of radial shear rolling technology
DOI 10.17580/cisisr.2024.01.06
Автор S. P. Galkin, T. Yu. Kin, Yu. V. Gamin, A. S. Aleshchenko, B. V. Karpov
Информация об авторе

National University of Science and Technology «MISIS» (Moscow, Russia)1 ; JSC “Istok ML” (Moscow, Russia)2

S. P. Galkin, Dr. Eng., Prof., Dept. of Metal Forming1,2, e-mail: glk-omd@yandex.ru

Yu. V. Gamin, Cand. Eng., Associate Prof., Dept. of Metal Forming1,2, e-mail: y.gamin@mail.ru

A. S. Aleshchenko, Cand. Eng., Associate Prof., Head of Dept. of Metal Forming1,2, e-mail: judger85@mail.ru

 

National University of Science and Technology «MISIS» (Moscow, Russia)
T. Yu. Kin, Leading Engineer, Postgraduate Student, Dept. of Metal Forming, e-mail: tatianakin@mail.ru

 

Research and Development Center “OMD” (Moscow, Russia)
B. V. Karpov, Head of Research and Development Center “OMD”, e-mail: karpov.bv@misis.ru

Реферат

Radial-shear rolling technology (RSR) is a modern, effective technique for obtaining structured semi-finished and final bar products from various metals and alloys, including hard-to-deform ones. Due to design features (feed angle 18–20 °, rolling angle 0–12 °, taper angle of roll 10 ± 2,5 °) implemented in the RSR equipment (mini-mills) and unique trajectory-deformation conditions, the possibility of obtaining ultrafine-grained functional-gradient structure is realized. At the same time, mini-mills are characterized by compactness and versatility of working tools, which allows to reduce labor costs and follow the concept of lean production. This article reviews the industrial application of technology and equipment of RSR and scientific and applied research in this direction by various scientific groups, outlines the elements of theory, as well as the main stages of development and implementation. The reviewed publications indicate the demand for and prospects of application of RSR technology for obtaining products with a unique combination of properties.

The study was supported by a grant from the Russian Science Foundation (Project No. 23-19-00477), https://rscf.ru/project/23-19-00477/.

Ключевые слова Radial-shear rolling, trajectory, deformation coefficients, deformation scheme, steel billet, gradient structure, rolling mini-mill, roll adjustment, recycling, deformation of continuously cast billets
Библиографический список

1. Albedyhl M., Bretschneider E. The 3-roll planetary mille a new high reduction machine. Iron Steel Eng. 1979. Vol. 56 (4). pp. 57–60.
2. Galkin S. P., Kharitonov E. A., Romanenko V. P. Radial-shear rolling as a new high-efficient method for metal forming. Progressive metal forming technologies. A manual. Moscow : IRIAS. 2009. pp. 293–302.
3. Galkin S. P., Gamin Yu. V., Aleshchenko A. S., Romantsev B. A. Modern development of elements of theory, technology and mini-mills of radial-shear rolling. Chernye Metally. 2021. No. 12. pp. 51–58.
4. Galkin S. P., Fadeev V. A., Gusak A. Yu. The technique for virtual gorges for calculation of mini-mills for radial-shear (helical) rolling. Proizvodstvo prokata. 2016. No. 2. pp. 27–35.
5. Galkin S. P., Fadeev V. A., Gusak A. Yu. Comparative analysis of geometry of mini-mills for radial-shear (helical) rolling. Proizvodstvo prokata. 2015. No. 12. pp. 19–25.
6. Galkin S. P., Mikhailov V. K., Romantsev B. A. Technical and technological synthesis in constructions of mini-mills of helical rolling. MET: Metal. Equipment. Tools. 2005. pp. 30–35.
7. Troitskii D. V., Gamin Yu. V., Galkin S. P., Budnikov A. S. Parametric model of a three-roll unit of radial-shear rolling mini-mill. Izvestiya. Ferrous Metallurgy. 2023. Vol. 66. No. 3. pp. 376–386. DOI: 10.17073/0368-0797-2023-3-376-386
8. Belevich A. V., Goncharuk A. V., Daeva E. V. Romantsev B. A. Study of technological and constructive parameters in work stands of helical rolling using up-to-date finite element systems. Izvestiya vuzov. Chernaya metallurgiya. 2002. No. 9. pp. 32–35.
9. Goncharuk A. V., Romantsev B. A., Mikhajlov V. K., Galkin S. P., Daeva E. V., Chistova A. P., Khzardzhyan A. A. Skew rolling method and apparatus for performing the same. Patent of invention RU 2179900 C1, 27.02.2002. No. 2001111559/02, 28.04.2001
10. Gamin Yu. V., Koshmin A. N., Dolbachev A. P., Galkin S. P., Aleshchenko A. S., Kadach M. V. Studying the influence of radial-shear rolling on the thermo-deformation conditions of aluminum AA1050 processing. Izvestiya. Non-Ferrous Metallurgy. 2020. No. 5. pp. 70–83. DOI: 10.17073/0021-3438-2020-5-70-83
11. Ku'akowska A., Laber K., Dyja H., Gryc A., Bakhaev K. V., Polunin D. S. Numerical Analisys of Aluminium Alloy 5754 Profile Rolling on Radial-Dispacement Rolling Mill. Byulleten Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya “Metallurgiya”. 2020. Vol. 20. No. 1. pp. 94–100. DOI: 10.14529/met200111
12. Gamin Yu. V., Galkin S. P., Nguyen X. D., Akopyan T. K. Analysis of temperature-deformation conditions for rolling aluminum alloy Al–Mg–Sc based on FEM modeling. Izvestiya. Non-Ferrous Metallurgy. 2022. Vol. 3. pp. 57–67. DOI: 10.17073/0021-3438-2022-3-57-67
13. Galkin S. P., Stebunov S. A., Aleschenko A. S., Vlasov A. V., Patrin P. V., Fomin A. V. Simulation and Experimental Evaluation of Circumferential Fracture Conditions in Hot Radial-Shear Rolling. Metallurgist. 2020. Vol. 64. pp. 233–241. DOI: 10.1007/s11015-020-00988-9
14. Naizabekov A. B., Lezhnev S. N., Arbuz A. S. The Effect of Radial-Shear Rolling on the Microstructure and Mechanical Properties of Technical Titanium. Solid State Phenomena. 2020. Vol. 299. pp. 565–570. DOI: 10.4028/www.scientific.net/ssp.299.565
15. Naidenkin E. V., Mishin I. P., Ratochka I. V., Vinokurov V. A. High-strength ultrafine-dispersed titanium alloys for aerospace industry. Safety and survivability of technical systems: materials and lectures. In 3 volumes. Krasnoyarsk : Siberian federal university. 2015. Vol. 2. pp. 89–94.
16. Grabovetskaya G. P., Mishin I. P., Naidenkin E. V., Zabudchenko O. V.,Stepanova E. N. Mechanical properties and creep of VT22 alloy after radial-shear rolling and subsequent aging. AIP Conf. Proc. 2022. April 22. 2509 (1): 020078. DOI: 10.1063/5.0084902
17. Soldatenkov A. P., Naidenkin E. V., Shanyavsky A. A., Mishin I. P., Eremin A. V., Bogdanov A. A., Panin S.V. A mesoscale study of fatigue fracture of near β titanium alloy VT22 after radial shear rolling with subsequent aging. Physical Mesomechanics. 2022. Vol. 25. pp. 537–548. DOI: 10.1134/S1029959922060066
18. Mishin I. P., Naidenkin E. V., Ratochka I. V., Lykova O. N., Vinokurov V. A., Manisheva A. I. Effect of radial shear rolling and aging on the structure and mechanical properties of titanium alloy VT35. AIP Conf. Proc. 2020. Dec. 14. 2310 (1). 020206. DOI: 10.1063/5.0034081
19. Karpov B. V., Patrin P. V., Galkin S. P., Kharitonov E., Karpov I. B. Radial-Shear Rolling of Titanium Alloy VT-8 Bars with Controlled Structure for Small Diameter Ingots (≤200 mm). Metallurgist. 2018. Vol. 61. pp. 884–890. DOI: 10.1007/s11015-018-0581-6
20. Negodin D. A., Galkin S. P., Kharitonov E. A. et al. Testing of the Technology of Radial-Shear Rolling and Predesigning Selection of Rolling Minimills for the Adaptable Production of Titanium Rods with Small Cross Sections Under the Conditions of the “ChMZ” JSC. Metallurgist. 2019. Vol. 62. pp. 1133–1143. DOI: 10.1007/s11015-019-00765-3
21. Beletskiy V. M., Krivov G. A. Aluminium alloys (Composition, properties, technology, application). Directory. Kiev: «KOMINTEX». 2005. 365 p.
22. Stefanik A., Szota P., Mróz S., Dyja H. Analysis of the Aluminum Bars in Three-High Skew Rolling Mill Rolling Process. Solid State Phenomena. 2015. Vol. 220–22. pp. 892–897. DOI: 10.4028/www.scientific.net/ssp.220-221.892
23. Stefanik A., Morel A., Mróz S., Szota P. Theoretical And Experimental Analysis Of Aluminium Bars Rolling Process In Three-High Skew Rolling Mill. Archives of Metallurgy and Materials. 2015. Vol. 60. № 2. pp. 809–813., DOI: 10.1515/amm-2015-0211
24. Mishin I. P., Naidenkin E. V., Lykova O. N., Zabudchenko O. V., Asanova G. T. Study of the effect of radial-shear rolling on structure and mechnaical properts of AMg6 alloy. Physical mesomechanics of materials. Physical principles of forming of multi-level structure and mechanisms of non-linear behaviour. Proceedings of International conference 2022. Novosibirsk, 2022. 166 p. DOI: 10.25205/978-5-4437-1353-3-100
25. Valeev I. S., Valeeva A. K., Fazlyakhmetov R. F. Khalikova G. R. Effect of radial-shear rolling on structure of aluminum alloy D16 (Al–4.4Cu–1.6Mg). Inorganic Materials: Applied Research. 2015. Vol. 6. pp. 45–48. DOI: 10.1134/S2075113315010153
26. Galkin S. P., Aleshchenko A. S., Gamin Y. V. Development and Experimental Testing of the Technology for Producing Deformed Bars of Alloy D16T from Continuously Casting Billets of Small Diameter with Low Elongation Ratios. Russ. J. Non-ferrous Metals. 2022. Vol. 63. pp. 328–335. DOI: 10.3103/S1067821222030063
27. Akopyan T., Gamin Y., Galkin S., Koshmin A., Kin T., Cheverikin V., Aleshchenko A. Effect of process parameters on the microstructure and mechanical properties of bars from Al–Cu–Mg alloy processed by multipass radial-shear rolling. Journal of Materials Science. 2022. Vol. 57. pp. 8298–8313. DOI: 10.1007/s10853-022-07167-y

28. Gamin Y. V., Galkin S. P., Romantsev B. A., Koshmin A. N., Goncharuk A. V., Kadach M. V. Influence of Radial-Shear Rolling Conditions on the Metal Consumption Rate and Properties of D16 Aluminum Alloy Rods. Metallurgist. 2021. Vol. 65. pp. 650–659. DOI: 10.1007/s11015-021-01202-0
29. Shurkin P. K., Akopyan T. K., Galkin S. P., Aleshchenko A. S. Effect of Radial Shear Rolling on the Structure and Mechanical Properties of a New-Generation High-Strength Aluminum Alloy Based on the Al–Zn–Mg–Ni–Fe System. Metal Science and Heat Treatment. 2019. Vol. 60. pp. 764–769. DOI: 10.1007/s11041-019-00353-x
30. Akopyan T. K., Belov N. A., Aleshchenko A. S., Galkin S. P., Gamin Y. V., Gorshenkov M. V., Cheverikin V. V., Shurkin P. K. Formation of the gradient microstructure of a new Al alloy based on the Al–Zn–Mg–Fe–Ni system processed by radial-shear rolling. Materials Science and Engineering: A. 2019. Vol. 746. pp. 134–144. DOI: 10.1016/j.msea.2019.01.029
31. Akopyan T. K., Gamin Y. V., Galkin S. P., Prosviryakov A. S., Aleshchenko A. S., Noshin M. A., Koshmin A. N., Fomin A. V. Radial-shear rolling of high-strength aluminum alloys: Finite element simulation and analysis of microstructure and mechanical properties. Materials Science and Engineering: A. 2020. Vol. 768: 139424. DOI: 10.1016/j.msea.2020.139424
32. Gamin Y., Akopyan T., Kin T., Galkin S., Aleshchenko A. Effect of radial-shear rolling on particle’s morphology and mechanical properties of AA7075 alloy. Materials Science and Technology. 2023. Vol. 39. Iss. 15. pp. 2205–2216. DOI: 10.1080/02670836.2023.2196471
33. Gamin Y., Akopyan T., Galkin S., Nguyen X., Cheverikin V., Fortuna A., Razinkin A., Ovsyannikov B., Esakov S. Effect of radial shear rolling on grain refinement and mechanical properties of the Al–Mg–Sc alloy. Journal of Materials Research. 2023. Vol. 38. pp. 4542–4558. DOI: 10.1557/s43578-023-01170-y
34. Arbuz A., Kawalek A., Ozhmegov K., Dyja H., Panin E., Lepsibayev A., Sultanbekov S., Shamenova R. Using of Radial-Shear Rolling to Improve the Structure and Radiation Resistance of Zirconium-Based Alloys. Materials. 2020; 13 (19) : 4306. DOI: 10.3390/ma13194306
35. Magzhanov M. K., Naizabekov A. B., Kavalek A. A., Panin E. A., Arbuz A. S. Study of changes in the structure of zirconium alloy E125 after deformation by radial shear rolling. Litiyo i Metallurgiya. 2023. No. 2. pp. 111–118. DOI: 10.21122/1683-6065-2023-2-111-118
36. Lutchenko N. A., Arbuz A. S., Kavalek A. A., Panin E. A., Popov F. E., Magzhanov M. K. Kazakhstan. Study of the influence of large shear deformations and vortex flow of metal on the formation of an equiaxed ultrafine-grained structure of the E110 zirconium alloy by the method of RSR. Litiyo i Metallurgiya. 2023. No. 1. pp. 128–134. DOI: 10.21122/1683-6065-2023-1-128-134
37. Diez M., Kim H.-E., Serebryany V., Dobatkin S., Estrin Y. Improving the mechanical properties of pure magnesium by threeroll planetary milling. Materials Science and Engineering: A. 2014. Vol. 612. pp. 287–292. DOI: 10.1016/j.msea.2014.06.061
38. Serebryany V. N., Dobatkin S. V., Estrin Yu. Z., Galkin S. P., Perezhogin V. Yu., Diez M. Comparative Analysis of the Texture Contribution to the Level of Mechanical Properties of Fine-Grained Magnesium Alloys after Equal Channel Angular Pressing and Radial-Shift Rolling. Tekhnologiya legkikh splavov. 2015. Vol. 2. pp. 112–118.
39. Dobatkin S., Galkin S., Estrin Y., Serebryany V., Diez M., Martynenko N., Lukyanova E., Perezhogin V. Grain refinement, texture, and mechanical properties of a magnesium alloy after radialshear rolling. Journal of Alloys and Compounds. 2019. Vol. 774. pp. 969–979. DOI: 10.1016/j.jallcom.2018.09.065
40. Gamin Y. V., Muñoz Bolaños J. A., Aleschenko A. S., Komissarov A. A., Bunits N. S., Nikolaev D. A., Fomin A. V., Cheverikin V. V. Influence of the radial-shear rolling (RSR) process on the microstructure, electrical conductivity and mechanical properties of a Cu–Ni–Cr–Si alloy. Materials Science and Engineering: A. 2021. Vol. 822. 141676. DOI: 10.1016/j.msea.2021.141676
41. Valeeva A. K., Valeev I. S. On the microhardness and microstructure of copper Cu 99,99 % at radial-shear rolling. Letters on Materials. 2013. Vol. 3 (1). pp. 38–40. DOI: 10.22226/2410-3535-2013-1-38-40
42. Gamin Y. V., Korotitskiy A. V., Kin T. Y., Galkin S. P., Kostin S. A., Tikhomirov E. O. Development of Temperature-Rate Modes of Hot Deformation of the Co–28Cr–6Mo Alloy Based on Processing Maps. Steel in Translation. 2022. Vol. 52. pp. 1027–1036. DOI: 10.3103/S0967091222110079
43. Yamanaka K., Mori M., Koizumi Y., Chiba A. Local strain evolution due to athermal γ→ε martensitic transformation in biomedical Co–Cr–Mo alloys. Journal of the Mechanical Behavior of Biomedical Materials. 2014. Vol. 32. pp. 52–61. DOI: 10.1016/j.jmbbm.2013.12.019
44. Mori M., Guo T., Yamanaka K., Wang Z., Yoshida K., Onuki Y., Sato S., Chiba A., Misra R.D.K. The significance of thermomechanical processing on the cellular response of biomedical Co–Cr–Mo alloys. Journal of the Mechanical Behavior of Biomedical Materials. 2022. Vol. 133. 105360. DOI: 10.1016/j.jmbbm.2022.105360
45. Mahmoud Alhaj Ali A., Gamin Yu. V., Kin T. Yu. Features of formation of the structure and properties of alloy Co–28Cr–6Mo after radial shear rolling. Magnitogorsk Rolling Practice 2023. Proceedings of the VII International Youth Scientific and Technical Conference. Magnitogorsk. 2023. 2023. pp. 111–112.
46. Galkin S. P., Gamin Y. V., Kin T. Yu., Kostin S. A. Experimental testing of radial-shear rolling to obtain a deformed alloy of the Co–Cr–Mo system. Chernye Metally. 2023. No. 9. pp. 47–53.
47. Xuan T. D., Sheremetyev V. A., Kudryashova A. A., Galkin S. P., Andreev V. A., Prokoshkin S. D., Brailovski V. B. Influence of the combined radial shear rolling and rotary forging on the stressstrain state of the small diameter bar stock of titanium-based alloys. Izvestiya. Non-Ferrous Metallurgy. 2020. No. 2. pp. 22–31. DOI: 10.17073/0021-3438-2020-2-22-31
48. Andreev V. A., Yusupov V. S., Perkas M. M. Up-to-date metal forming technologies of shape memory alloys on the base of titanium nickelide. Prospective materials and technologies. In 2 volumes. Vitebsk : UO «VGTU». 2019. Vol. 1. pp. 115–128.
49. Solona O., Derevenko I., Kupchuk I. Determination of plasticity for pre-deformed billet. Solid State Phenomena. 2019. Vol. 291. pp. 110–120. DOI: 10.4028/www.scientific.net/SSP.291.110
50. Galkin S. P., Kharitonov E. A., Romanenko V. P. Development of skew rolling for production of pipe billets. Stal. 2009. No. 8. pp. 54–57.
51. Galkin S. P., Aleschenko A. S., Romantsev B. A., Gamin Yu. V., Iskhakov R. V. Effect of Preliminary Deformation of Continuously Cast Billets by Radial-Shear Rolling on the Structure and Properties of Hot-Rolled Chromium-Containing Steel Pipes. Metallurgist. 2021. Vol. 65. pp. 185–195. DOI: 10.1007/s11015-021-01147-4
52. Iskhakov R., Gamin Y., Kadach M., Budnikov A. Development of radial-shear rolling mill special stands for continuous cast billets deformation. IOP Conference Series: Materials Science and Engineering. 2020. Vol. 966. 012074. DOI: 10.1088/1757-899X/966/1/012074
53. Ovchinnikov D. V., Bogatov A. A., Erpalov M. V. Development and put into practice production technology for tubing pipes from continuously cast billet. Chernye metally. 2012. No. 3. pp. 18–21.
54. Bogatov A. A., Pavlov D. A., Nukhov D. Sh. Helical rolling of continuously cast billets from structural steels. A manual. Ekaterinburg: Min. obr. RF, UrFU. 2017. 164 p.
55. Patrin P. V., Karpov B. V., Aleshchenko A. S., Galkin S. P. Capability Process Assessment of Radial-Displacement Rolling of Heat-Resistant Alloy KhN73MBTYu. Steel in Translation. 2020. Vol. 50. pp. 42–45. DOI: 10.3103/S096709122001009X
56. Galkin S. P., Romantsev B. А., Та D. X., Gamin Yu. V. Resourcesaving technology for production of round bars from used shaft of rolling railroad stock. Chernye Metally. 2018. No. 4. pp. 21–27.
57. Galkin S. P., Romantsev B. А., Smerdin V. N., Averyanov А. А., Nekrasov М. V. Innovative technology for recycling sucker rods using technology and mini-mills for radial-shear rolling in the conditions of OJSC “Ochersky Machine-Building Plant”. Inzhenernaya praktika. 2014. No. 9. pp. 58–61.
58. Lezhnev S. N., Naizabekov A. B., Volokitina I. E., Panin E. A., Kuldeyev E. I. Radial-shear rolling as a new technological solution for recycling bar scrap of ferrous metals. Complex Use of Mineral Resources. 2021. No. 1 (316). pp. 46–52. DOI: 10.31643/2021/6445.06

Полный текст статьи Review of scientific-applied research and industrial application of radial shear rolling technology
Назад