Журналы →  Черные металлы →  2024 →  №9 →  Назад

Металлургия
Название Моделирование режима охлаждения при закалке крупногабаритной заготовки ротора из Cr – Ni – Mo – V-стали
DOI 10.17580/chm.2024.09.05
Автор Д. В. Цуканов, Д. Л. Смирнова, А. П. Петкова, В. В. Штерцер
Информация об авторе

НИЦ «Курчатовский институт» – ЦНИИ КМ «Прометей», Санкт-Петербург, Россия

Д. В. Цуканов, инженер I-й категории1, эл. почта: tsumami@mail.ru
Д. Л. Смирнова, ведущий инженер1, эл. почта: tsumami@mail.ru

 

Санкт-Петербургский горный университет императрицы Екатерины II, Санкт-Петербург, Россия
А. П. Петкова, профессор кафедры материаловедения и технологии художественных изделий, докт. техн. наук, эл. почта: apetkova@inbox.ru

В. В. Штерцер, аспирант кафедры материаловедения и технологии художественных изделий, эл. почта: st.valeriaa@yandex.ru

Реферат

Рассмотрены процессы, связанные с фазовыми превращениями при закалке крупногабаритных поковок из легированных сталей. Проанализированы базовые процессы превращений, их возможное влияние совместно с режимами охлаждения на характеристики свойств. В первой части статьи изучены вопросы фазовых превращений в области перлитного и бейнитного превращений, определенных по стандартным термокинетическим диаграммам и смоделированным режимам. Приведены расчетные значения скоростей охлаждения поковки максимального сечения 1000 мм в трех зонах (поверхности, центре и 1/2 радиуса заготовки) при закалке в масле, определены микроструктура и кинетика перлитного и бейнитного превращения. Приведены результаты дилатометрических исследований в трех различных температурных зонах по сечению термообрабатываемой заготовки при охлаждении с соответствующими расчетными скоростями. Во второй части статьи выполнен анализ кривых охлаждения, микроструктуры и твердости образцов после закалки в масле, а также температуры начала и окончания превращения аустенита в трех зонах заготовки. Сделаны выводы о важности учета ширины диапазона критических точек для оценки характера превращения аустенита в области перлитного превращения. Показано, что скорости охлаждения при закалке не постоянны во всем диапазоне температур, что необходимо учитывать при построении термокинетических диаграмм превращения аустенита при непрерывном охлаждении. Характер превращения аустенита при моделировании режима охлаждения наиболее показателен и соответствует реальным режимам охлаждения при закалке.

Ключевые слова Фазовое превращение, дилатометрическая кривая, закалка, отпуск, аустенит, мартенсит, бейнит, перлит, феррит, прокаливаемость
Библиографический список

1. Tsukanov V. V., Smirnova D. L., Efimov S. V. Choosing accumulation and preliminary heat treatment modes for making forged ingots of medium-carbon medium-alloy steels. Inorganic Materials: Applied Research. 2022. Vol. 13, Iss. 6. pp. 1534–1545.
2. Tsukanov V. V., Filimonov G. N., Grekova I. I., Teplukhina I. V., Dyukov V. V. et al. Possibilities of optimization of heat treatment mode for reactor steel. Voprosy materialovedeniya. 2004. No. 4 (40). pp. 14–23.
3. Tsukanov V. V., Durynin V. A. Improvement of preliminary heat treatment modes for forgings made of heat-resistant steels of Cr-4Ni-Mo-V and Cr-Mo-V compositions and recommendations for final heat treatment. Voprosy materialovedeniya. 2009. No. 3 (59). pp. 85–95.
4. Tsukanov V. V., Lebedeva N. V., Markova Yu. M. Conditions for diffusion transformation of austenite in steel Cr–3Ni–Mo–V-composition with high stability of austenite. Zapiski Gornogo instituta. 2018. Vol. 230. pp. 153–159. DOI: 10.25515/PMI.2018.2.153
5. Tsukanov V. V., Efimov S. V., Titova T. I. et al. Features of the production of large-sized forgings from highly heat-resistant steel of 3Cr-Mo-W-V composition and assessment of its structure and properties. Tyazheloe mashinostroenie. 2020. No. 1-2. pp. 2–6.
6. Milyuts V. G., Tsukanov V. V., Pryakhin E. I., Nikitina L. B. Development of technology for production of high-strength hull steel, ensuring a reduction in the production cycle and high quality of sheets. Zapiski Gornogo instituta. 2019. Vol. 239. pp. 536–543. DOI: 10.31897/PMI.2019.5.536
7. Vologzhanina S. A., Igolkin A. F., Peregudov A. A., Baranov I. V. et al. Effect of the deformation degree under low temperature conditions on the transformations and properties of metastable austenitic steels. Obrabotka metallov (tekhnologiya – oborudovanie – instrumenty). 2022. Vol. 24. No. 1. pp. 73–86.
8. Bazhin V. Yu., Issa B. Effect of heat treatment on the microstructure of steel coils of a heating tube furnace. Zapiski Gornogo instituta. 2021. Vol. 249. pp. 393–400. DOI: 10.31897/PMI.2021.3.8
9. Shakhnazarov K. Y., Pryakhin E. I., Mikhailov A. V. 630 °C ± 30 °C - nodal (critical) temperature of iron and carbon steel. Materials Science Forum. 2021. Vol. 1040. pp. 191–199. DOI: 10.4028/www.scientific.net/MSF.1040
10. Tsukanov V. V., Gromova N. B., Fomin S. E., Efimova O. V. Acceleration of the A→P transformation in deep-hardening steels. Proceedings of the XVI International scientific and technical conference “Problems of resource and safe operation of materials and structures” March 1–2, St. Petersburg. 2011. pp. 150–154.
11. Pustovoyt V. N., Dolgachev Yu. V., Karavaev V. P. Decomposition of residual austenite in U12 steel during processing in a magnetic field. Tendentsii razvitiya nauki i obrazovaniya. 2021. Vol. 70-2. pp. 71–73. DOI: 10.18411/lj-02-2021-57
12. Zhao W., Feng G., Ren H., Zhang M. et al. Temperature-dependent characteristics of DH36 steel fatigue crack propagation. Fatigue & Fracture of Engineering Materials & Structures. 2020. Vol. 43. Iss. 3. pp. 617–627.
13. Pryakhin E. I., Ligachev A. E., Kolobov Y. R., Zakharenko E. A. et al. Assessment of the thermal effect on the surface of metal structural materials on the stability of laser-induced codes readability. Materials Science Forum. 2021. Vol. 1040. pp. 47–54.
14. Okishev K. Yu. Calculation of diagrams of isothermal decomposition of austenite in structural steels. Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie. 2020. Vol. 22. No. 2. pp. 82–89. DOI: 10.15593/2224-9877/2020.2.10
15. Bolobov V. I., Popov G. G. Methodology for testing pipeline steels for resistance to rill corrosion. Zapiski Gornogo instituta. 2021. Vol. 252. pp. 854–860. DOI: 10.31897/PMI.2021.6.7
16. Popov A. A., Popova A. E. Isothermal and thermokinetic diagrams of decomposition of undercooled austenite. Moscow : MAShGIZ. 1961. 234 p.
17. Bazhin V. Yu. Modern view on anomalies in metal groups of the D. I. Mendeleyev`s Periodic Table. Zapiski Gornogo instituta. 2020. Vol. 239. pp. 520–527.
18. Gulenko A. G., Tsukanov V. V. Calculation assessment of the stress level in large-sized blanks of power engineering parts during cooling after tempering. Tyazheloe mashinostroenie. 2012. No. 8. pp. 21–27.
19. Vologzhanina S. A., Teplukhina I. V., Batasov A. V., Ovanesyan K. K. et al. Features of austenite decomposition and patterns of structure formation in low-alloy steel of 09G2SA-A grade during continuous cooling. Globalnaya energiya. 2023. Vol. 29. No. 1. pp. 170–180.
20. Shakhnazarov K. Yu., Vologzhanina S. A., Khuznakhmetov R. M. Explanation of anomalies in the formation of structure and physical and mechanical properties of steels and alloys. Informatsionno-tekhnologicheskiy vestnik. 2023. No. 1 (35). pp. 196–209.
21. Lorenzon A., Antonello M., Berto F. Critical review of turbulence models for cfd for fatigue analysis in large steelstructures. Fatigue & Fracture of Engineering Materials & Structures. 2018. Vol. 41, Iss. 4. pp. 762–775.
22. Leontiev L. I., Tsukanov V. V., Smirnova D. L. The role of D. K. Chernov in the creation and development of the doctrine of modern metallurgy and metal science. Part 2. Scientific and practical confirmation of the D. K. Chernov`s ideas. Izvestiya vuzov. Chernaya Metallurgiya. 2020. Vol. 63 (11-12). pp. 873–877. DOI: 10.17073/0368-0797-2020-11-12-873-877
23. Sadovsky V. D. Structural heredity in steel. Moscow : Metallurgiya, 1973. 208 p.
24. Spencer R. P., Patterson E. A. Observations of fatigue crack behaviour in proton-irradiated 304 stainless steel. Fatigue & Fracture of Engineering Materials & Structures. 2019. Vol. 42, Iss. 9. pp. 2120–2132.
25. Lu Y.-C., Chen T., Yang F.-P., Lan T. The retardation effect of static torsion on fatigue crack growth in stripsteel. Fatigue & Fracture of Engineering Materials & Structures. 2020. Vol. 43, Iss. 8. pp. 1800–1813.
26. Davydov S. V. Carbide transformation of peritectoid type in Fe-C alloys. Metallurgiya mashinostroeniya. 2020. No. 4. pp. 17–26.
27. Shakhnazarov K. Y., Pryakhin E. I., Troshina E. Y. Rationale for signs of transformation in iron near 200 °C. Letters on Materials. 2022. Vol. 12, Iss. 4. pp. 298–302.
28. Davydov S. V. Peritectoid carbide transformation based on ε-carbide Fe2C in Fe-C-system alloys. Part 1. Basics of theory. Chernye Metally. 2020. No. 11. pp. 15–21.
29. Balandin S. Yu., Durynin V. A., Titova T. I., Tsukanov V. V. Improvement of preliminary heat treatment of large forgings made of steel of C-Mo-V and Cr-Ni-Mo-V composition. Proceedings of the XIII International scientific and technical conference of St. Petersburg State University of Refrigeration and Food Processing Technologies. St. Petersburg, 2007. pp. 212–218.
30. Leontiev L. I., Tsukanov V. V., Smirnova D. L. The role of D. K. Chernov in the creation and development of the doctrine of modern metallurgy and metal science. Part 1. The main theoretical and industrial discoveries of D. K. Chernov. Izvestiya vuzov. Chernaya Metallurgiya. 2020. Vol. 63 (10). pp. 796–801. DOI: 10.17073/0368-0797-2020-10-796-801
31. Tsukanov V. V. Modern steels and technologies in power engineering. Saint Petersburg : ANO LA “Professional“, 2014. 464 p.
32. Tsukanov V. V., Smirnova D. L., Efimov S. V., Titova T. I. et al. Computer modeling of the modes of the main heat treatment of a forged blank made of 20Kh3MVFA grade steel. Tyazheloe mashinostroenie. 2020. No. 9. pp. 2–9.
33. Alekseev V. I., Barakhtin B. K., Zhukov A. S. Chemical heterogeneity as a factor in increasing the strength of steels manufactured using selective laser melting technology. Zapiski Gornogo instituta. 2020. Vol. 242. p. 191. DOI: 10.31897/PMI.2020.2.191
34. Pryakhin E. I., Sharapova D. M. Understanding the structure and properties of the heat affected zone in welds and model specimens of high-strength low-alloy steels after simulated heat cycles. CIS Iron and Steel Review. 2020. Vol. 19. pp. 60–65.
35. Youn G.-G., Kim J.-S., Kim Y.-J., Kamaya М. Numerical prediction of notch bluntness effect on fracture resistance of sm490 acarbon steel. Fatigue & Fracture of Engineering Materials & Structures. 2020. Vol. 43, Iss. 4. pp. 660–671.
36. Davydov S. V., Filippov R. A., Moroz A. A. Low-temperature decomposition of pearlite in ironcarbon alloys by the reaction of peritectoid transformation. Naukoemkie tekhnologii v mashinostroenii. 2021. No. 2 (116). pp. 3–13. DOI: 10.30987/2223-4608-2021-2-3-13
37. Bogdanov V. I., Teplukhina I. V., Tsvetkov A. S., Titova T. I. et al. Features of austenite grain growth in forging metal from a large ingot of structural steel. Pisma o materialakh. 2019. Vol. 9. No. 3. pp. 304–309. DOI: 10.22226/2410-3535-2019-3-304-309

Language of full-text русский
Полный текст статьи Получить
Назад