Журналы →  Черные металлы →  2024 →  №9 →  Назад

Машиностроительные технологии
Название Технологическое обеспечение качества поверхности заготовки на основе локального криогенного воздействия при обработке аустенитных сталей
DOI 10.17580/chm.2024.09.13
Автор В. В. Максаров, Нгуен Ван Дао, А. Д. Халимоненко, П. В. Шишкин
Информация об авторе

Санкт-Петербургский горный университет императрицы Екатерины II, Санкт-Петербург, Россия

В. В. Максаров, декан механико-машиностроительного факультета, докт. техн. наук, профессор, эл. почта:
maks78.54@mail.ru
Нгуен Ван Дао, аспирант кафедры машиностроения, эл. почта: nguyenvandao091097@gmail.com

А. Д. Халимоненко, доцент кафедры машиностроения, канд. техн. наук, эл. почта: Khalimonenko_AD@pers.spmi.ru
П. В. Шишкин, доцент кафедры транспортно-технологических процессов и машин, канд. техн. наук, эл. почта: shishkinp@mail.ru

Реферат

Проведен анализ методов дробления стружки при обработке труднообрабатываемых материалов. Рассмотрен процесс резания заготовок из аустенитных сталей на основе предварительного локального криогенного воздействия на обрабатываемую поверхность с созданием упрочненной зоны с мелкозернистой структурой. Построена модель локального криогенного воздействия на обрабатываемые поверхности заготовок. Определены размерные параметры упрочненной зоны с мелкозернистой структурой, способствующей обеспечению устойчивого сегментирования и дробления сливной стружки, а также достижению высокого качества обработанных поверхностей заготовки после нанесения предварительного криогенного воздействия. Показано влияние криогенного воздействия на процесс обработки резанием аустенитных сталей.

Ключевые слова Аустенитная сталь, токарная обработка, стружкообразование, шероховатость поверхности, качество обработки, локальное криогенное воздействие, термический удар, жидкий азот
Библиографический список

1. Kumar A., Sharma R., Kumar S., Verma P. A review on machining performance of AISI 304 steel. Materials Today: Proceedings. 2021. Vol. 56, Iss. 6. pp. 2945–2951. DOI: 10.1016/j.matpr.2021.11.003
2. Milyuts V. G., Tsukanov V. V., Pryakhin E. I., Nikitina L. B. Development of manufacturing technology for high-strength hull steel reducing production cycle and providing high-quality sheets. Journal of Mining Institute. 2019. Vol. 239. p. 536. DOI: 10.31897/PMI.2019.5.536
3. Ermakov S. B., Ermakov B. S., Vologzhanina S. A., Sleptsov O. I. Investigation of material properties for cryogenic products, produced by additive manufacturing techniques. Metallurgist. 2023. Vol. 67, Iss. 5-6. pp. 644–651. DOI: 10.1007/s11015-023-01552-x
4. Pryakhin E. I., Sharapova D. M. Understanding the structure and properties of the heat affected zone in welds and model specimens of high-strength low-alloy steels after simulated heat cycles. CIS Iron and Steel Review. 2020. Vol. 19. pp. 60–65.
5. Kukharova T. V., Ilyushin Y. V., Asadulagi M.-A. M. Investigation of the OA-300M electrolysis cell temperature field of metallurgical production. Energies. 2022. Vol. 15, Iss. 23. 9001. DOI: 10.3390/en15239001
6. Gorbunov O. I., Maksarov V. V., Olt Yu. Automation and control of the chip breaking process of the processed material of the austenitic class under preliminary cryogenic action. Metalloobrabotka. 2009. No. 3 (51). pp. 48–54.
7. Karabulut Ş., Güllü A., Yilmaz B. A review of the chip breaking methods for continuous chips in turning. Journal of Manufacturing Processes. 2019. Vol. 49. pp. 50–69. DOI: 10.1016/j.jmapro.2019.10.026
8. Pacella M. A new low-feed chip breaking tool and its effect on chip morphology. The International Journal of Advanced Manufacturing Technology. 2019. Vol. 104, Iss. 1-4. pp. 1145–1157. DOI: 10.1007/s00170-019-03961-2
9. Khrustaleva I. N., Lyubomudrov S. A., Larionova T. A., Brovkina Ya. Yu. Improving the efficiency of technological preparation for production of components for manufacture of mineral resource complex equipment. Zapiski Gornogo instituta. 2021. Vol. 249. pp. 417–426. DOI: 10.31897/PMI.2021.3.11
10. Artamonov E. V., Vasiliev D. V., Chernyshov M. O. Chip breaking during automated cutting of difficult-to-machine steels by means of complex application of chip-breaking tool and hightemperature embrittlement. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. 2020. Vol. 24 (1). pp. 8–22. DOI: 10.21869/2223-1560-2020-24-1-8-22
11. Schwarze M., Rüger C., Georgi O., Rentzsch H. et al. Actuator and process development for vibration assisted turning of steel. Advances in Transdisciplinary Engineering. 2021. Vol. 15. pp. 64–69. DOI: 10.3233/ATDE210013
12. Tej Patel, Sahitya Yadav, Zeel Raj, Prassan Shah et al. Analysis of machining performance of AISI 420 stainless steel using conventional and ultrasonic assisted turning. Materials Today: Proceedings. 2019. Vol. 26. pp. 2200–2207. DOI: 10.1016/j.matpr.2020.02.478
13. Yingshuai Xu, Zhihui Wan, Ping Zou, Qinjian Zhang. Experimental study on chip shape in ultrasonic vibration–assisted turning of 304 austenitic stainless steel. Advances in Mechanical Engineering. 2019. Vol. 11, Iss. 8. DOI: 10.1177/1687814019870896
14. Kim Jun-Hwan, Kim Eun-Jung, Lee Choon-Man. A study on the heat affected zone and machining characteristics of difficult-to-cut materials in laser and induction assisted machining. Journal of Manufacturing Processes. 2020. Vol. 57, Iss. 5. pp. 499–508. DOI: 10.1016/j.jmapro.2020.07.013
15. Zhu J.-N., Zhu W., Borisov E., Hermans M. et al. Effect of heat treatment on microstructure and functional properties of additively manufactured NiTi shape memory alloys. Journal of Alloys and Compounds. 2023. Vol. 967. 171740. DOI: 10.1016/j.jallcom.2023.171740
16. Bezyazychnyi V., Szcerek M. Thermal processes research development in machine-building technology. Journal of Mining Institute. 2018. Vol. 232. pp. 395-400. DOI: 10.31897/PMI.2018.4.395
17. Stampfer B., Bachmann J., Gauder D., Böttger D. et al. Modeling of surface hardening and roughness induced by turning AISI 4140 QT under different machining conditions. Procedia CIRP. 2022. Vol. 108, Iss. 1-2. pp. 293–298. DOI: 10.1016/j.procir.2022.03.050
18. Bazhin V. Y., Issa B. Influence of heat treatment on the microstructure of steel coils of a heating tube furnace. Journal of Mining Institute. 2021. Vol. 249. pp. 393–400. DOI: 10.31897/PMI.2021.3.8
19. Volokitina I., Siziakova E., Fediuk R., Kolesnikov A. Development of a thermomechanical treatment mode for stainless-steel rings. Materials. 2022. Vol. 15, Iss. 14. 4930. DOI: 10.3390/ma15144930

20. Arzoo M. Z., Hassan M., Gupta N. A comparison study between conventional and cryogenic machining. Innovations in Mechanical Engineering. 2022. pp. 329–337. DOI: 10.1007/978-981-16-7282-8_22
21. Che Hassan Che Haron, Shalina Sheik Muhamad, Jaharah A. Ghani. A review on future implementation of cryogenic machining in manufacturing industry. Progress in Industrial Ecology An International Journal. 2018. Vol. 12. Iss. 3. pp. 260–283. DOI: 10.1504/PIE.2018.10018040
22. Quanxin Jiang, Virgínia M. Bertolo, Vera Popovich, Jilt Sietsma et al. Microstructure-based cleavage modelling to study grain size refinement and simulated heat affected zones of S690 high strength steel. Engineering Fracture Mechanics. 2022. Vol. 267. Iss. 19. 108432. DOI: 10.1016/j.engfracmech.2022.108432
23. Vologzhanina S. A., Ermakov S. B., Ermakov B. S., Sleptsov O. I. Study of properties of materials for cryogenic purpose articles obtained by additive technologies. Metallurg. 2023. No. 5. pp. 67–72.
24. Mayer P., Kirsch B., Müller C., Hotz H. et al. Deformation induced hardening when cryogenic turning. CIRP Journal of Manufacturing Science and Technology. 2018. Vol. 23. pp. 6–19. DOI: 10.1016/j.cirpj.2018.10.003
25. Hotz H., Kirsch B., Zhu Tong, Smaga M. et al. Surface layer hardening of metastable austenitic steel e Comparison of shot peening and cryogenic turning. Journal of Materials Research and Technology. 2020. Vol. 9. Iss. 6. pp. 16410–16422. DOI: 10.1016/j.jmrt.2020.11.109
26. Aurich J. C., Patrick M., Benjamin K., Eifler D. et al. Characterization of deformation induced surface hardening during cryogenic turning of AISI 347. CIRP Annals - Manufacturing Technology. 2014. Vol. 63. Iss. 1. pp. 65–68. DOI: 10.1016/j.cirp.2014.03.079
27. Wang Bo, Hong Chuanshi, Winther G., Christiansen T. L. et al. Deformation mechanisms in meta-stable and nitrogen-stabilized austenitic stainless steel during severe surface deformation. Materialia. 2020. Vol. 12. 100751. DOI: 10.1016/j.mtla.2020.100751
28. Vologzhanina S., Igolkin A., Peregudov A., Baranov I. et al. Effect of the deformation degree at low temperatures on the phase transformations and properties of metastable austenitic steels. Obrabotka Metallov. 2022. Vol. 24. Iss. 1. pp. 73–86. DOI: 10.17212/1994-6309-2022-24.1-73-86
29. Maksarov V. V., Nguyen V. D., Efimov A. E., Brigadnov I. A. Technological support of the quality of operational surfaces of a workpiece made of austenitic steels. Metalloobrabotka. 2023. No. 1 (133). pp. 47–54. DOI: 10.25960/mo.2023.1.47
30. Ershov D. Y., Lukyanenko N., Zlotnikov E. G. Dynamic properties of technological drive operating in acceleration mode. Smart Innovation, Systems and Technologies. 2022. Vol. 232. pp. 323–333. DOI: 10.1007/978-981-16-2614-6_28
31. Pompeev K. P., Timofeev D. Yu. Precision dimensional analysis in CAD design of reliable technologies. IOP Conference Series: Earth and Environmental. 2018. Vol. 194. Iss. 2. 022028. DOI: 10.1088/1755-1315/194/2/022028
32. Keksin A. I., Sorokopud N. I., Zakirov N. N. Peculiarities of abrasive finishing of surfaces of parts made of aluminium alloy of АМts grade in magnetic field. International Journal of Engineering, Transactions C: Aspects. 2024. Vol. 37. Iss. 06. pp. 1098–1105. DOI: 10.5829/ije.2024.37.06c.06
33. Yu Su, Guoyong Zhao, Yugang Zhao, Jianbing Meng et al. Multi-objective optimization of cutting parameters in turning AISI 304 austenitic stainless steel. Metals - Open Access Metallurgy Journal. 2020. Vol. 10. Iss. 2. 217. DOI: 10.3390/met10020217
34. V. Durga Prasad Rao, Sk. R. S. Mahaboob Ali, Sk. M. Z. M. Saqheed Ali, V. Navya Geethika. Multiobjective
optimization of cutting parameters in CNC turning of stainless steel 304 with TiAlN nano coated tool. Materials Today: Proceedings. 2018. Vol. 5. Iss. 12. pp. 25789–25797.
35. Kuntoglu M., Acar O., Gupta M. K., Saglam H. et al. Parametric optimization for cutting forces and material removal rate in the turning of AISI 5140. Machines. 2021. Vol. 9. Iss. 90. pp. 1–21. DOI: 10.3390/machines9050090

Полный текст статьи Технологическое обеспечение качества поверхности заготовки на основе локального криогенного воздействия при обработке аустенитных сталей
Назад