Журналы →  Gornyi Zhurnal →  2024 →  №12 →  Назад

PHYSICS OF ROCKS AND PROCESSES
Название Monitoring of waterproof pillars at salt deposits
DOI 10.17580/gzh.2024.12.06
Автор Prigara A. M., Zhukov A. A., Tsarev R. I., Skopinov M. V.
Информация об авторе

VNII Galurgii JSC, Perm, Russia
A. M. Prigara, Head of Research Field, Candidate of Engineering Sciences, vniig@uralkali.com
A. A. Zhukov, Head of Laboratory, Candidate of Engineering Sciences
R. I. Tsarev, Head of Research Field, Candidate of Engineering Sciences
M. V. Skopinov, Director of Geological Sciences

Реферат

As per the Federal Norms and Regulations on Industrial Safety, salt mine fields are divided into waterproof sites using waterproof pillars. This measure is aimed to prevent mines from flooding by means of waterproofing of mine sites to withstand probable damage of impermeable strata and influx of oversalt water. In operation of a mine with waterproof pillars created, the mined-out part of the mine field can be closed up by constructing brattices in underground rooms and by filling the mined-out voids with mineral brines. Owing to solubility of salts, waterproof pillars get affected by brines and degrade. For this reason, before completion of all operations in a mine, it is required to monitor condition and dimension, as well as physical properties of waterproof pillars that separate the closed-up and operating areas in a mine. The control over condition of waterproof pillars using methods which can cause damage to them (for instance, drilling) is inadmissible; thus, it is reasonable to monitor possible changes in dimension and physical properties of salt rocks in pillars with time with the help of the nondestructive inspection—geophysical exploration. This study aimed to select and justify an NDT procedure for the width and physical properties of waterproof pillars in salt mines. The analysis of applicability of geophysical exploration techniques in geotechnical conditions of salt rock deposits yields that the most promising method in this case is underground seismics. The implemented research with numerical modeling and field studies enabled justification of an underground seismics procedure for the investigation of waterproof pillars. The procedure uses P- and S-waves, and engineering seismology equipment with little modification of attachment of seismic sensors. It is demonstrated that the procedure is serviceable in monitoring time changes in width and in physical properties of waterproof pillars.
The authors appreciates participation of Doctor of Engineering Sciences, Professor V. N. Aptukov (VNII Galurgii JSC, Perm State National Research University), Candidate of Engineering Sciences V. A. Voroshilov (VNII Galurgii JSC, Perm State National Research University) in this research.

Ключевые слова Upper Kama Salt Deposit, geophysics, reflected wave method, common depth point method, underground seismics, transverse waves with reflection separation, geology, waterproof pillar
Библиографический список

1. Kudryashov A. I. Verkhnekama salts deposit. 2nd revised edition. Moscow : Epsilon Plyus, 2013. 368 p.
2. Golubev B. M. Structure of salt strata in the Upper Kama deposit : Theses of Dissertation of Candidate of Geologo-Mineralogical Sciences. Perm, 1972. 31 p.
3. Jackson M. P. A., Hudec M. P. A. Salt Tectonics: Principles and Practice. Cambridge : Cambridge University Press, 2017. 510 p.
4. Baryah A. A., Evseev A. V., Lomakin I. S., Tsayukov A. A. Operational control of rib pillar stability. Eurasian Mining. 2020. No. 2. pp. 7–10.
5. Zubov V. P., Kovalski E. R., Antonov S. V., Pachgin V. V. Improving the safety of mines in developing Verkhnekamsk potassium and magnesium salts. MIAB. 2019. No. 5. pp. 22–33.
6. Milanović P., Maksimovich N., Meshcherikova O. Dams and Reservoirs in Evaporites. Series: Advances in Karst Science. Cham : Springer, 2019. 157 p.
7. Giannino F., Leucii G. Electromagnetic Methods in Geophysics: Applications in GeoRadar, FDEM, TDEM, and AEM. Hoboken : John Wiley & Sons, 2022. 304 p.
8. Teare B. L., Ruiz H., Agbona A., Wolfe M., Dobreva I. et al. Effect of Soil Water on GPR Estimation of Bulked Roots, Methods, and Suggestions. 2021. Available at: https://www.researchsquare.com/article/rs-907807/v1 (accessed: 10.06.2024).
9. Gendzwill D. J., Brehm R. High-resolution seismic reflections in a potash mine. Geophysics. 1993. Vol. 58, Iss. 5. pp. 741–748.
10. Rapetsoa M. K., Manzi M. S. D., Westgate M., Sihoyiya M., James I. et al. Cost-effective in-mine seismic experiments to image platinum deposits and associated geological structures at Maseve platinum mine, South Africa. Near Surface Geophysics. 2022. Vol. 20, Iss. 6. pp. 572–589.
11. Rapetsoa M. K., Manzi M. In-mine seismic method for platinum orebody exploration in Maseve Platinum Mine, South Africa. NSG2021 27th European Meeting of Environmental and Engineering Geophysics. 2021. Vol. 2021. DOI: 10.3997/2214-4609.202120195
12. Matloga S., Manzi M., Bybee G. Interpretation of legacy 3D seismic data for underground platinum mines: Implication for mine safety. NSG2022 4th Conference on Geophysics for Mineral Exploration and Mining. Belgrade, 2022. Vol. 2022. DOI: 10.3997/2214-4609.202220153
13. Mahlalela V., Manzi M. Interpretation of legacy 3D seismic data from Oryx Mine in South Africa using seismic attributes. NSG2022 4th Conference on Geophysics for Mineral Exploration and Mining. Belgrade, 2022. Vol. 2022. DOI: 10.3997/2214-4609.202220175
14. Gillot E., Ponglungca A., Mounier P., Timberlake C. 3D seismic application for Mae Moh Coal Mine development. 24th European Meeting of Environmental and Engineering Geophysics. Porto, 2018. Vol. 2018. DOI: 10.3997/2214-4609.201802609
15. Kolesov S., Kuzin A., Kondrashkov V. High-resolution vibroseismology on the mining field. Engineering and Mining Geophysics 2019 : Proceedings of the 15th Conference and Exhibition. Gelendzhik, 2019. Vol. 2019. DOI: 10.3997/2214-4609.201901763
16. Savich A. I., Koptev V. I., Nikitin V. N., Yashchenko Z. G. Seismic Methods of Hard Rock Study. Moscow : Nedra, 1969. 239 p.
17. Antsiferov A. V., Glukhov A. A., Antsiferov V. A. Mine seismic prediction of tectonic faults by reflected waves using the method of location. MIAB. 2020. No. 6. pp. 131–139.
18. Glukhov A. A. Analysis of information content of seismic exploration methods to detect probable methane accumulation zones. RANIMI Transactions. Donetsk, 2023. No. 23(38). pp. 9–20.
19. Babkin A. I. Underground Multiple Overlapping Seismics — A case-study of the Upper Kama Potassium Salt Deposit : Theses of Dissertation of Candidate of Engineering Sciences. Perm, 2001. 20 p.
20. Vagin V. B. Underground Seismics Methods of Salt Rock Mass Study. Minsk : Bel NITs “Ekologiya”, 2010. 188 p.
21. Kulagov E. V. Features of seismic waves excited in salt rock mass of the Starobinsk deposit. Litosfera. 2012. No. 2(37). pp. 105–111.
22. Zhukov A. A., Prigara A. M., Tsarev R. I., Shustkina I. Yu., Voroshilov V. A. Influence of sources and receivers directivity on results of mine seismic survey. Geofizika. 2019. No. 5. pp. 26–36.
23. Prigara A. M. Features of processing of mine seismic data on transverse waves with reflection separation. Engineering and Mining Geophysics : Proceedings of the 16th Conference and Exhibition. Perm, 2020. DOI: 10.3997/2214-4609.202051166
24. Glukhikh A. V., Tsarev R. I., Zhukov A. A., Moroshkina Yu. N., Prigara A. M. Geological substantiation of the results of mine seismic survey on shear waves with reflection separation. Engineering and Mining Geophysics : Proceedings of the 16th Conference and Exhibition. Perm, 2020. DOI: 10.3997/2214-4609.202051151
25. Tsarev R. I., Prigara A. M., Zhukov A. A. The possibilities of mine seismic survey on shear waves. Engineering and Mining Geophysics 2019 : Proceedings of the 15th Conference and Exhibition. Gelendzhik, 2019. DOI: 10.3997/2214-4609.201901765
26. Prigara A. M., Zhukov A. A., Tsarev R. I. et al. Method of shaft seismic survey. Patent RF, No. 2709415. Applied: 02.04.2019. Published: 17.12.2019. Bulletin No. 35.
27. Konstantinova A. S., Aptukov V. N. Some Problems of Deformation and Failure Mechanics of Salt Rocks. Novosibirsk : Nauka, 2013. 191 p.

Language of full-text русский
Полный текст статьи Получить
Назад