Название |
Разработка методики геомеханической и структурной документации керна на основе технологий искусственного интеллекта |
Информация об авторе |
ООО «УК Полюс», Москва, Россия
Селиванов Д. А., руководитель направления структурной геологии, selivanovda@polyus.com
Университет Иннополис, Иннополис, Россия Пинигин А. Д., руководитель Отдела технологий искусственного интеллекта Шагитов А. М., аналитик данных |
Библиографический список |
1. Lushnikov V. N., Selivanov D. A., Berezhnoy V. P. Reliable prediction of geotechnical risks in open pit mining. Gornyi Zhurnal. 2023. No. 1. pp. 4–13. 2. Selivanov D. A. Applied structural geology for stability assessment and geotechnical risk management in mines. Gornyi Zhurnal. 2021. No. 1. pp. 54–58. 3. Trofimov A. V., Kirkin A. P., Rumyantsev A. E., Yavarov A. V. Use of numerical modelling to determine optimum overcoring parameters in rock stress–strain analysis. Tsvetnye Metally. 2020. No. 12. pp. 22–27. 4. Zhao Y., Lv W., Xu S., Wei J., Wang G. et al. DETRs Beat YOLOs on Real-time Object Detection. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, 2024. pp. 16965–16974. 5. Medvedev E. Yu., Voronova L. I. Identification of urban ore using RT–DETR algorithm. DSPA: Voprosy primeneniya tsifrovoy obrabotki signalov. 2024. No. 2. pp. 28–35. 6. Dosovitskiy A., Beyer L., Kolesnikov A., Weissenborn D., Zhai X. et al. An Image is worth 16×16 words: Transformers for image recognition at scale. ICLR 2020: 8th International Conference on Learning Representations. Addis Ababa, 2020. 7. Zhou Z., Siddiquee M. M. R., Tajbakhsh N., Liang J. UNet++: A Nested U-Net Architecture for medical image segmentation. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support : Proceedings of the 4th and 8th International Workshop. Series: Lecture Notes in Computer Science. Cham : Springer, 2018. pp. 3–11. 8. Wang G., Li W., Aertsen M., Deprest J., Ourselin S. et al. Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks. Neurocomputing. 2019. Vol. 338. pp. 34–45. 9. Tereshchenko S. N., Osipov A. L., Moiseeva E. D. Detection of deer in images by computer vision methods. Siberian Journal of Life Sciences and Agriculture. 2024. Vol. 16, No. 2. pp. 431–449. 10. Barton N., Lien R., Lunde J. Engineering classification of rock masses for the design of tunnel support. Rock Mechanics. 1974. Vol. 6, Iss. 4. pp. 189–236. 11. Chen T., Kornblith S., Norouzi M., Hinton G. A simple framework for contrastive learning of visual representations. Proceedings of the 37th International Conference on Machine Learning. Vienna, 2020. Vol. 119. 12. Pikul A. S. An ensemble of modern computer vision models for deepfake detection. Bezopasnost informatsionykh tekhnologiy. 2024. Vol. 31, No. 4. pp. 116–127. 13. Ke L., Danelljan M., Li X., Tai Y.-W., Tang C.-K. et al. Mask transfiner for high-quality instance segmentation. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition : Proceedings. New Orleans, 2022. pp. 4402–4411. |