Journals →  Tsvetnye Metally →  2025 →  #5 →  Back

MATERIALS SCIENCE
ArticleName Effect of silver nanoparticles on the structure and corrosion resistance of porous titanium nickelide alloy
DOI 10.17580/tsm.2025.05.09
ArticleAuthor Marchenko E. S., Baygonakova G. A., Larikov V. A., Khabibova E. D.
ArticleAuthorData

Institute for Problems of Chemical and Energetic Technologies SB RAS, Biysk, Russia ; National Research Tomsk State University, Tomsk, Russia

E. S. Marchenko, Associate Professor, Leading Researcher1, Head of the Laboratory of Medical Alloys and Shape Memory Implants2, Doctor of Physical and Mathematical Sciences

 

National Research Tomsk State University, Tomsk, Russia
G. A. Baygonakova, Senior Researcher, Candidate of Physical and Mathematical Sciences

V. A. Larikov, Postgraduate Student, Junior Researcher, e-mail: calibra1995se@gmail.com
E. D. Khabibova, Junior Researcher

Abstract

The structure, phase composition and corrosion resistance of the porous TiNi alloy with the addition of 0.5% (at.) silver nanoparticles obtained by the self-propagating high-temperature synthesis method were studied. X-ray diffraction analysis showed the presence of TiNi (B2), Ti4Ni2O, TiAg and CaTiO3 phases. The predominance of the TiNi (B2) phase indicates the preservation of the titanium nickelide structure, and the presence of the Ti4Ni2O and TiAg phases indicates the formation of intermetallic compounds and oxides during the synthesis. The CaTiO3 phase is probably formed as a result of calcium impurities in the titanium powder. The results of scanning electron microscopy and element mapping showed that silver is localized mainly at the boundaries of Ti4Ni2O inclusions, interacting with calcium and titanium. This may indicate a significant effect of silver on the change in the micro- and nanostructure of the alloy. Electrochemical impedance spectroscopy and potentiodynamic measurements revealed a significant effect of silver addition on the corrosion properties of the alloy. There is a decrease in polarization resistance and an increase in the corrosion current density for the TiNi – 0.5 Ag alloy compared to pure TiNi, which indicates a decrease in the corrosion resistance of the alloy with the addition of silver. A shift in the corrosion potential to a more positive side and a change in the phase composition of the oxide layer were also recorded, which is explained by the formation of the CaTiO3 phase. Thus, the addition of 0.5% (at.) silver nanoparticles to the porous TiNi alloy improves the conductivity of the material, but reduces its corrosion resistance.
The research was carried out under support of the RF Ministry of Science and Higher Education according to the project No. FSWM-2025-0009.

keywords Porous titanium nickelide, silver nanoparticles, self-propagating high-temperature synthesis, macrostructure, microstructure, phase composition, corrosion resistance
References

1. Eisenbarth E., Velten D., Muller M. Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials. 2004. Vol. 25. pp. 5705–5713.
2. Long M., Rack H. J. Titanium alloys in total joint replacement-a materials science perspective. Biomaterials. 1998. Vol. 19. pp. 1621–1639.
3. Geetha M., Singh A. K., Asokamani R., Gogia A. K. Ti based biomaterials, the ultimate choice for orthopaedic implants – a review. Prog. Mater. Sci. 2009. Vol. 54. pp. 397–425.
4. Zheng Y. F., Zhang B. B., Wang B. L., Wang Y. B. et al. Introduction of antibacterial function into biomedical TiNi shape memory alloy by the addition of element Ag. Acta Biomater. 2011. Vol. 7. pp. 2758–67.
5. Zhang E. L., Zhao X. T., Hu J. L. Antibacterial metals and alloys for potential biomedical implants. Bioact. Mater. 2021. Vol. 6. pp. 2569–2612.
6. Zhang E. L., Fu S., Wang R. X. Role of Cu element in biomedical metal alloy design. Rare Metals. 2019. Vol. 38. pp. 476–494.
7. Oh K. T. Effect of silver addition on the properties of nickel–titanium alloys for dental application. J. Biomed. Mater. Res. 2006. Vol. 76B. pp. 306–314.
8. Jhou W. T. TiNiCuAg shape memory alloy films for biomedical applications. J. Alloys Compd. 2018. Vol. 738. pp. 336–44.
9. Chun S. J. Martensitic transformation behavior of Ti – Ni – Ag alloys. Intermetallics. 2014. Vol. 46. pp. 91–96.
10. Gilberto A. S., Otubo J. Investigation of Ni-and Ti-content influence on microstructure and phase transformation behavior of NiTi SMA alloyed with Ag. MATEC Web of Conferences. 2015. Vol. 33. 6.
11. Li S. Microstructures and martensitic transformation behavior of superelastic Ti – Ni – Ag scaffolds. J. Mater. Res. Bull. 2016. Vol. 82. pp. 39–44.
12. Zamponi C., Wuttig M., Quandt E. Ni – Ti – Ag shape memory thin films. Script. Mater. 2007. Vol. 56. pp. 1075–7.
13. Oh K. T., Joo U. H., Park G. H., Hwang C. J. et al. Effect of silver addition on the properties of nickel-titanium alloys for dental application. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2006. Vol. 76. pp. 306–314.
14. Li S., Kim Y. W., Nam T. H. Transformation behavior and superelastic properties of Ti – Ni – Ag scaffolds prepared by sintering of alloy fibers. Scr. Mater. 2018. Vol. 153. pp. 23–26.
15. Momeni S., Tillmann W. Influence of Ag on antibacterial performance, microstructure and phase transformation of NiTi shape memory alloy coatings. Vacuum. 2019. Vol. 164. pp. 242–245.
16. Da Silva G., Alvares O. Designing NiTiAg shape memory alloys by vacuum arc remelting: first practical insights on melting and casting. Shape Mem. Superelasticity. 2018. Vol. 4. pp. 402–410.
17. Marchenko E. S., Baigonakova G., Gyunter V. E. The effect of silver doping on the structure and shape memory effect in biocompatible TiNi alloys. Tech. Phys. Lett. 2018. Vol. 44. pp. 749–752.
18. Li S., Kim E. S., Kim Y. W., Nam T. H. Microstructures and marten sitic transformation behavior of superelastic Ti – Ni – Ag scaffolds. Mater. Res. Bull. 2016. Vol. 82. pp. 39–44.
19. Jang J.-Y., Chun S.-J., Kim N.-S., Cho J.-W. et al. Martensitic transformation behavior in Ti – Ni – X (Ag, In, Sn, Sb, Te, Tl, Pb, Bi) ternary alloys. Mater. Res. Bull. 2013. Vol. 48. pp. 5064–5069.
20. Yi X., Pang G., Sun B., Meng X. et al. The microstructure and martensitic transformation behaviors in Ti – Ni – Hf – X (Ag, Sn) high temperature shape memory alloys. J. Alloy. Compd. 2018. Vol. 756. pp. 19–25.
21. Wever D. J., Veldhuizen A. G., de Vries J., Busscher H. J. et al. Electrochemical and surface characterization of a nickel–titanium alloy. Biomaterials. 1998. Vol. 19. pp. 761–769.
22. Plant S. D., Grant D. M., Leach L. Behaviour of human endothelial cells on surface modified NiTi alloy. Biomaterials. 2005. Vol. 26. pp. 5359–67.
23. Mockers O., Deroze D., Camps J. Cytotoxicity of orthodontic bands, brackets and archwires in vitro. Dent. Mater. 2002. Vol. 18. pp. 311–7.
24. Ryhnen J., Kallioinen M., Tuukkanen J., Junila J. et al. In vivo biocompatibility evaluation of nickel–titanium shape memory metal alloy: muscle and perineural tissue responses and encapsule membrane thickness. J. Biomed. Mater. Res. 1998. Vol. 41. pp. 481–488.
25. Luo P., Wang S. N., Zhao T. T. Surface characteristics, corrosion behavior, and antibacterial property of Ag-implanted NiTi alloy. Rare Met. 2013. Vol. 32. pp. 113–121.
26. Borisov S. A., Gordienko I. I., Tsap N. A., Baigonakova G. A. et al. Antibacterial activity and biocompatibility of titanium nickelide augments with the addition of silver nanoparticles for bone grafting: an experimental study. Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care. 2024. Vol. 14. pp. 21–31.
27. Marchenko E., Baigonakova G., Larikov V., Monogenov A. Influence of silver nanoparticles on the structure and mechanical properties of porous titanium nickelide alloys. Non-ferrous Metals. 2022. Vol. 2. pp. 78–84.
28. Yue Q., Zhenli H., Yuehui H., Qian Z. et al. Preparation of porous TiNi intermetallic compound and the corrosion behavior in NaCl solution. Intermetallics. 2023. Vol. 161. 107987.
29. Stern M., Geary A. L. Electrochemical polarization: a theoretical analysis of the shape of polarization curves. Journal of the electrochemical society. 1957. Vol. 104. pp. 56–63.
30. Marchenko E., Baigonakova G., Larikov V., Monogenov A., Yasenchuk Y. Structure and mechanical properties of porous TiNi alloys with Ag nanoparticles. Coatings. 2023. Vol. 13. 24.

Language of full-text russian
Full content Buy
Back