Журналы →  Chernye Metally →  2025 →  №11 →  Назад

Ironmaking
Название Phase transformations of oily scale components under blast furnace conditions
DOI 10.17580/chm.2025.11.02
Автор A. S. Kharchenko, V. I. Sysoev, S. K. Sibagatullin, A. V. Dzyuba
Информация об авторе

Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia

A. S. Kharchenko, Dr. Eng., Associate Prof., Head of the Dept. of Metallurgy and Chemical Engineering, e-mail: as.mgtu@mail.ru
V. I. Sysoev, Cand. Eng., Head of Laboratory of the Dept. of Metallurgy and Chemical Engineering, e-mail: v.sysoev@magtu.ru
S. K. Sibagatullin, Dr. Eng., Prof., Dept. of Metallurgy and Chemical Engineering, e-mail: 10tks@mail.ru
A. V. Dzyuba, Postgraduate Student, Dept. of Metallurgy and Chemical Engineering, e-mail: dzyuba.98@bk.ru

Реферат

Phase transitions of oily scale components were studied using differential scanning calorimetry on a NETZSCH STA (Jupiter 449 F3) synchronous thermal analysis instrument under continuous heating to 1450 °C at a rate of 10 °C/min in an argon atmosphere. Heat absorption due to water evaporation (230.3 kJ/kg) occurred in the temperature range of 65–148 °C. The resulting thermal effect in the intense oil evaporation temperature range from 170 to 480 °C was slightly exothermic and amounted to 25.4 kJ/kg due to amorphous phase crystallization processes. At the Curie point of magnetite (590.2 °C), the endothermic effect was 12.8 kJ/kg; in the temperature range from 745 to 857 °C, it was 75.6 kJ/kg due to the reduction of magnetite to wustite by residual carbon; during localized reduction of FeO to metallic iron at a temperature of 1141.7 °C, it was 10.5 kJ/kg; and in the wustite melting temperature range of 1367–1412 °C, with continued reduction of FeO, it was 189.2 kJ/kg. The equivalent heat capacity was calculated for various temperature ranges. For conditions in the upper zone of intensive heat exchange, the equivalent heat capacity varied from 25 to 2950 J/(kg∙°C) as the scale moved from the furnace throat toward the hearth. The calculated reduction in specific coke consumption when loading oily mill scale at a rate of 5 t/day (1.3 kg/t hot metal) was approximately 0.1 kg/t hot metal, while the reduction in blast furnace gas temperature was approximately 0.2 °C.

Ключевые слова Oily mill scale, iron-containing waste recycling, simultaneous thermal analysis, differential scanning calorimetry, equivalent heat capacity, specific coke consumption, blast furnace gas temperature
Библиографический список

1. Rovin S. L., Rovin L. E. A new concept for recycling dispersed iron-containing waste. Proceedings of the 10th International Scientific and Practical Conference "Advanced Foundry Technologies", Moscow, November 9–13, 2020. pp. 238–243.
2. Bulatov K. V., Gazaleeva G. I. Prospects for the development of ferrous metallurgy waste processing technologies. Fundamental research and applied developments for processing and utilization of man-made formations: Proceedings of the V Congress with International Participation and the Conference of Young Scientists "TECHNOGEN-2021", 2021. pp. 21–33.
3. Remus M., Monsonet M. A. A., Roudier S., Sancho L. D. Best available techniques (BAT) refe rence document for iron and steel production. Luxemburg: Publications office of the European Union, 2013. 627 р.
4. Yessengaliev D., Mukhametkhan M., Mukhametkhan Ye., Zhabalova G., Kelamanov B., Kolesnikova O., Shyngysbayev B., Aikozova L., Kaska-taeva K., Kuatbay Y. Studies of the possibility of improving the quality of iron ores and processing of technogenic composite ironcontaining waste of metallurgical production. Journal of Composites Science. 2023. Vol. 7, Iss. 12. 501. DOI: 10.3390/jcs7120501
5. Nemenov A. M. Events in facts and figures. Metallurg. 2016. No. 9. pp. 104–112.
6. Furmanski L. M., Muller T. G., Nuernberg Ju. B. Martins M. A., Arnt Â. B. C., da Rocha M. R., Zaccaron A., Peterson M. Efficient production of ferrous sulfate from steel mill scale waste. Journal of Sustainable Metallurgy. 2024. Vol 10, Iss. 3. pp. 1783–1794. DOI: 10.1007/s40831-024-00900-8
7. Hryhoriev S., Petryshchev A., Sinyaeva N., Yurchenko A., Sklyar O., Kvitka S., Borysov V., Vlasiuk V., Tsymbal B., Borysova S. Studying the physicochemical properties of alloyed metallurgical waste as secondary resource saving raw materials. Eastern-European Journal of Enterprise Technologies. 2018. Vol. 4, Iss. 12 (94). pp. 43–48. DOI: 10.15587/1729-4061.2018.140924
8. Shatokha V. I., Gogenko O. O., Kripak S. M. Utilising of the oiled rolling mills scale in iron ore sintering process. Resources, Conservation and Recycling. 2011. Vol. 55, Iss. 4. pp. 435–440. DOI: 10.1016/j.resconrec.2010.11.006
9. Somova Yu. V., Sviridova T. V., Alekseeva P. A., Nekerov E. A., Schwabecher D. Analysis of methods for processing oily mill scale and oily sludge for iron and steel production. IOP Conference Series: Earth and Environmental Science, Krasnoyarsk, Krasnoyarsk Science and Technology City Hall of the Russian Union of Scientific and Engineering. Vol. 839. Krasnoyarsk : IOP Publishing Ltd, 2021. 42046. DOI: 10.1088/1755-1315/839/4/042046
10. Selivanov V. N., Yusfin Yu. S., Chernousov P. I., Seyfulov R. V., Gubanov V. I. Method of producing pig iron with use of blast-furnace process at metallurgical enterprise. Patent RF, No. 2131929. Applied: 26.06.1998. Published: 20.06.1999.
11. Dzyuba A. V., Savinov A. S., Kharchenko A. S., Sibagatullin S. K., Sysoev V. I., Kharchenko E. O., Pavlov A. V. Predicting the temperature of oily scale packed in a metal container when moving from the throat to the hearth in a blast furnace. Teoriya i tekhnologiya metallurgicheskogo proizvodstva. 2024. No. 4 (51). pp. 24–29.
12. Sheremet M. A., Syrodoy S. V. Analysis of free convective heat transfer modes in cylindrical technological systems. Izvestiya Tomskogo politekhnicheskogo universiteta. 2010. Vol. 317, No. 4. pp. 43–48.
13. Kotomkin A. V., Rusakova N. P., Turovtsev V. V., Orlov Yu. D. Software package for calculating the thermodynamic properties of organic compounds. InnoTsentr. 2015. No. 4 (9). pp. 80–85.
14. Kuznetsov N. M., Frolov S. M. Heat capacity and enthalpy of saturated hydrocarbons (alkanes) in the ideal gas state. Gorenie i vzryv. 2020. Vol. 13, No. 2. pp. 113–117. DOI: 10.30826/CE20130212
15. Anikin A. E., Galevsky G. V., Rudneva V. V. Study of physicochemical characteristics of iron oxide-containing technogenic raw materials. Chernaya metallurgiya. Byulleten nauchnotekhnicheskoy i ekonomicheskoy informatsii. 2018. No. 9 (1425). pp. 107–113.
16. GOST R 51947-2002. Petroleum and petroleum products. Determination of sulfur by method of energy-dispersive X-ray fluorescence spectrometry. Introduced: 01.07.2003.
17. Dzyuba A. V., Savinov A. S., Kharchenko A. S., Sibagatullin S. K., Sysoev V. I., Kharchenko M. V. Strength characteristics of containers with oily scale manufactured to approximate the size of coke. Heat engineering and informatics in education, science, and production: Proceedings of the XII All-Russian Scientific and Practical Conference of Students, Postgraduates, and Young Scientists (TIM'2024) with International Participation. Yekaterinburg, May 16–17, 2024. Yekaterinburg : UrFU, 2024. pp. 37–41.
18. Pavlov A. V. Improvement of blast furnace smelting technology using model decision support systems: Dissertation … of Candidate of Engineering Sciences. Magnitogorsk, 2016. 162 p.
19. Spirin N. A., Gurin I. A., Lavrov V. V., Istomin A. S., Zaynullin L. A. Information and modeling system for monitoring heat losses in the lower part of a blast furnace. Metallurg. 2024. No. 2. pp. 71–75.

Language of full-text русский
Полный текст статьи Получить
Назад