Journals →  Gornyi Zhurnal →  2025 →  #11 →  Back

RISK MANAGEMENT AND GEODYNAMIC SAFETY OF FIELD DEVELOPMENT
ArticleName Numerical modeling of stress–strain rockburst faults and secondary fracturing zones based on the data of geological and structural analysis of rock mass
DOI 10.17580/gzh.2025.11.12
ArticleAuthor Bagautdinov I. I., Loktyukova O. Yu., Shabarov A. N.
ArticleAuthorData

Empress Catherine II Saint-Petersburg Mining University, Saint-Petersburg, Russia

I. I. Bagautdinov, Leading Researcher, Candidate of Engineering Sciences, bagautdinov_ii@pers.spmi.ru
O. Yu. Loktyukova, Leading Engineer
A. N. Shabarov, Director, Doctor of Engineering Sciences

Abstract

The article considers some approaches to numerical modeling of rockburst tectonic faults. Much attention is paid to the zones of secondary fracturing that form in the vicinity of a shearing zone under the action of plastic deformations, usually at the initial stage of loading (Riedel shears). The authors propose to model such faults using the advanced model of geomaterials—Concrete. An important feature of this model is the ability to take into account the change in strength and deformation characteristics over time, strain hardening and softening of the material under the action of both tangential and tensile stresses, shear creep and volume shrinkage. The parametric support of the model of geomaterial behavior is made based on the results of laboratory tests at the Mining University. The forecast of propagation of Riedel shears is presented in the form of the plastic deformation profiles in rock mass. The authors have found out that the magnitude of the fracture development angle largely depends on the actual roughness of the main fracture fault, of course, with regard to the scale effect. Thus, for a conventionally rectilinear main fault (JRC=0), the propagation angles of Riedel shears (secondary fractures) are in the range from 39 to 55 degrees. The obtained results are confirmed by field observations of other researchers, which indicates the potential for practical application of the proposed approach after some additional research.

The research was supported by the Russian Science Foundation, Grant No. 23-17-00144.

keywords Tectonic faults, numerical modeling, Riedel shears, plastic deformation, softening, shear, block rock mass
References

1. Rasskazov I. Yu., Batugin A. S., Fedotova Yu. V., Potapchuk M. I. The proneness assessment of a mineral deposit to tectonic rockburst: A case-study of Yuzhnoe deposit. Gornyi Zhurnal. 2023. No. 1. pp. 74–78.
2. Batugin A. S. Classification of the Earth’s crust sites by the degree of geodynamic hazard. MIAB. 2010. No. 12. pp. 87–94.
3. Loktyukova O. Yu., Kravchuk A. V. Tectonic fault prediction procedure based on reinterpretation of geological exploration data. MIAB. 2025. No. 2. pp. 114–129.
4. Batugin A.S., Moroz N.E. History of development and prospects for further application of the geodynamic zoning method. Gornaya Promyshlennost. 2024. No. 3S. pp. 14–19.
5. Olkhovatenko V. E., Trofimova G. I., Ozhogina T. V. Methods of Fracturing Analysis in Rocks. Tomsk : Izdatelstvo Tomskogo gosudarstvennogo arkhitekturno-stroitelnogo universiteta, 2015. 80 p.
6. Rebetskiy Yu. L., Mikhaylova A. V., Sim L. A. Structure of damages in the depth of shearing zones. Tectonophysical modeling results. Tectonophysics. Commemoration of the Tectonophysics Laboratory’s 40th Anniversary of Establishment by M. V. Gzovsky at the Institute of Physics of the Earth, RAS. Moscow : Institut fiziki Zemli im. O. Yu. Shmidta RAN, 2008. pp. 103–140.
7. Rebetsky Yu. L. Mechanism of tectonic stress generation in the zones of high vertical movements. Physical Mesomechanics. 2008. Vol. 11, No. 1. pp. 66–73.
8. Yakovlev F., Gaidzik K., Voytenko V., Frolova N. Balanced cross-section restoration in a complicated folded hinterland structure: Shilbilisaj profile, Talas ridge, Caledonian Tien Shan. Terra Nova. 2023. Vol. 35, Iss. 1. pp. 1–14.
9. Korbutyak A. N., Frolova N. S., Mishakina A. A. Physical modeling of structuring in the sedimentary mantle above a basement fault. Comparison with the echelon oil-andgas-bearing swell-like upheavals in northern West-Siberia Platform. Karotazhnik. 2018. No. 3(285). pp. 57–67.
10. Frolova N. S., Korbutyak A. N., Mishakina A. A., Korpach S. V. Deformation development in shearing zones: Physical simulation using sand. Tectonophysics and Urgent Issues in the Earth Science : Proceedings of the 4th All-Russian Tectonophysical Conference with International Participation. Moscow : IFZ, 2016. Vol. 2. pp. 385–392.
11. Belyakov N. A., Emelyanov I. A. Inclusion of rock mass fracturing in determination of in situ stress state by overcoring using multi-component displacement sensor. MIAB. 2024. No. 12-1. pp. 145–164.
12. Korchak P. A., Karasev M. A. Geo-mechanical prediction of the brittle fracture zones in rocks in the vicinity of the excavation junction of LTD “Apatit” mines. Sustainable Development of Mountain Territories. 2023. Vol. 15, No. 1. pp. 67–80.
13. Verbilo P. E., Karasev M. A., Shishkina V. S. Geomechanical state of jointed rock pillar with the account of softening behaviour. Gornyi Zhurnal. 2025. No. 3. pp. 41–47.
14. Kozyrev A. A., Kuznetcov N. N., Fedotova I. V., Shokov A. N. The estimation of rockburst hazard for hard rocks by the test results below and beyond the compressive strength. Rock Mechanics for Natural Resources and Infrastructure Development : Proceedings of the 14th International Congress on Rock Mechanics and Rock Engineering. Series: Proceedings in Earth and geosciences. London : CRC Press, 2020. Vol. 6. pp. 1792–1798.
15. Ilinov M. D., Korshunov V. A., Pospekhov G. B., Shokov A. N. Integrated experimental research of mechanical properties of rocks: Problems and solutions. Gornyi Zhurnal. 2023. No. 5. pp. 11–18.
16. Plaxis Connect Edition V22.02. 2025. Available at: https://bentleysystems.servicenow.com/community?id=kb_article_view&sysparm_article=KB0108423 (accessed: 29.04.2025).
17. Litvinenko V., Trushko V. Modelling of geomechanical processes of interaction of the ice cover with subglacial Lake Vostok in Antarctica. Antarctic Science. 2025. Vol. 37, Iss. 1. pp. 39–48.
18. Trushko V. L., Rozanov A. O., Saitgaleev M. M., Petrov D. N., Ilinov M. D. et al. Acoustic emission criteria for analyzing the process of rock destruction and evaluating the formation of fractured reservoirs at great depths. Journal of Mining Institute. 2024. Vol. 269. pp. 848–858.
19. Rasskazov M. I., Tereshkin A. A., Tsoi D. I., Konstantinov A. V., Sidlyar A. V. Assessment of geomechanical behavior of rock mass by the data of seismic monitoring with acoustic sensing at rockburst-hazardous deposits. MIAB. 2021. No. 12-1. pp. 167–182.
20. Protosenya A.G., Belyakov N.A., Bouslova M.A. Modelling of the stress-strain state of block rock mass of ore deposits during development by caving mining systems. Journal of Mining Institute. 2023. Vol. 262. pp. 619–627.
21. Protosenya A. G., Alekseev A. V., Verbilo P. E. Prediction of the stress–strain state and stability of the front of tunnel face at the intersection of disturbed zones of the soil mass. Journal of Mining Institute. 2022. Vol. 254. pp. 252–260.
22. Noskov V. A., Badtiev B. P., Pavlovich A. A. Risk management in open pit mining. Gornyi Zhurnal. 2020. No. 2. pp. 51–55.
23. Golovchenko Yu. Yu., Rumyantsev A. E., Lalin V. V., Sonnov M. A. Modeling of tectonic faults using finite stiffness links with integration in CAE Fidesys. Gornaya Promyshlennost. 2025. No. 4. pp. 78–84.
24. Kalinin E. V., Barykina O. S., Panasyan L. L. Mathematical-Numerical Modeling of Tectonic Fault Zone (Tadzhikistan). Engineering Geology for Society and Territory. Applied Geology for Major Engineering Projects : Conference Proceedings. Cham : Springer, 2015. Vol. 6. pp. 91–93.
25. Li Y., Liu Y., Niu A., Zhan W., Feng W. et al. Numerical simulation of fault activity in the Qilian tectonic belt and dynamic background of Menyuan earthquake series. Journal of Geodynamics. 2024. Vol. 161. ID 102034.
26. Li Y., Liu S., Chen L., Du Y., Li H. et al. Mechanism of crustal deformation in the Sichuan-Yunnan region, southeastern Tibetan Plateau: Insights from numerical modeling. Journal of Asian Earth Sciences. 2017. Vol. 146. pp. 142–151.
27. Li S., Moreno M., Bedford J., Rosenau M., Oncken O. Revisi ting viscoelastic effects on interseismicdeformation and locking degree: A case studyof the Peru–North Chile subduction zone. Journal of Geophysical Research: Solid Earth. 2015. Vol. 120, Iss. 6. pp. 4522–4538.
28. Li Y., Wu Q., Pan J., Zhang F., Yu D. An upper-mantle S-wave velocity model for East Asia from Rayleigh wave tomography. Earth and Planetary Science Letters. 2013. Vol. 377-378. pp. 367–377.
29. Wang H., Liu-Zeng J., Ng A. H.-M., Ge L., Javed F. et al. Sentinel-1 observations of the 2016 Menyuan earthquake: A buried reverse event linked to the left-lateral Haiyuan fault. International Journal of Applied Earth Observation and Geoinformation. 2017. Vol. 61. pp. 14–21.
30. Wu Y., Jiang Z., Pang Y., Chen C. Sta tistical correlation of seismicity and geodetic strain rate in the Chinese Mainland. Seismological Research Letters. 2022. Vol. 93. No. 1. P. 268–276.
31. Yang H., Wang D., Guo R., Xie M., Zang Y. et al. Rapid repor t of the 8 January 2022 MS 6.9 Menyuan earthquake, Qinghai, China. Earthquake Research Advances. 2022. Vol. 2, Iss. 1. ID 100113.
32. Xu Z., Li H. The Wenchuan Earthquake Fault Scientific Drilling (WFSD) Project. Earthquake and Disaster Risk: Decade Retrospective of the Wenchuan Earthquake. Singapore : Springer, 2019. pp. 69–105.
33. Zhang P.-Z., Wen X.-Z., Shen Z.-K., Chen J.-H. Oblique, High-Angle, Listric-reverse faulting and associated development of strain : The Wenchuan Earthquake of May 12, 2008, Sichuan, China. Annual Review of Earth and Planetary Sciences. 2010. Vol. 38. pp. 353–382.
34. Noskov V. A., Morozov K. V., Grishchenkova E. N., Tenison L. O. Geomechanical risk evaluation and control using machine learning. Gornyi Zhurnal. 2025. No. 8. pp. 49–56. DOI: 10.17580/gzh.2025.08.06

Language of full-text russian
Full content Buy
Back