Journals →  Materialy Elektronnoi Tekhniki →  2013 →  #2 →  Back

MATERIALS SCIENCE AND TECHNOLOGY. DIELECTRICS
ArticleName Synthesis and Study of the Infrared Luminescence of Solid Solutions (Y1−XYbX)3Al5O12 with Laser Excitation
Abstract

This research work is dedicated to research and development of luminescent properties of solid solutions (Y1−xYbx)3Al5O12 with laser excitation. The spectra of infrared luminescence excited by a laser beam with a wavelength of 0.94 microns. The analysis of the luminescence spectra obtained for solid solutions with different concentrations of ytterbium ions in the composition, and the dependences of the luminescence intensity of the activator composition. Found that in the concentration range of ytterbium ions in the (0.03 ≤ x ≤ 0.09), there is a significant increase in the intensity of the luminescence in the 1036 nm and reaches a maximum. With further increase in the concentration of ytterbium ions in the range (0.09 ≤ x ≤ 0.115), a decrease in the intensity of luminescence. Decrease in the intensity of luminescence caused by the action of migration and multipole interactions between the ions of ytterbium. And this is due to the fact that at higher concentrations, the probability of recombination energy between ytterbium ions and various quenching centers. Change in the concentration of ytterbium ions has also a strong influence on the kinetic characteristics of the infrared luminescence of solid solutions (Y1−xYbx)3Al5O12. When the concentration of the activator to 0.03 mole fractions of the afterglow time constant (τ) increases monotonically from 1040 μs to 1120 μs. With a further increase in the content of the activator in the solid solution, τ decreases monotonically and the activator concentration of 0.15 mole fractions of 744 microseconds. Solid solutions (Y1−xYbx)3Al5O12 with maximum intensity infrared luminescence in the band 1036 mm damping constant of about 794 μs.

keywords Rare earth elements, luminescence
References

1. Manashirov, O. Ya. Vliyanie chistoty iskhodnykh veshchestv na intensivnost' lyuminestsentsii erbiya v antistoksovykh lyuminoforakh / O. Ya. Manashirov, N. I. Smirdova, N. P. Efryushina, N. S. Poluektov // Vysokochistye veshchestva. − 1988. − № 3. − S. 198—201.

2. Geller, S. Crystal chemistry of the garnets / S. Geller // Z. Kristallographic. − 1967. − V. 125. − N 1−6. − R. 1—47.
3. Zimina, G. V. Sintez i issledovanie alyumoittrievykh granatov, legirovannykh neodimom i itterbiem / G. V. Zimina, A. V. Novoselov, I. N. Smirnova, F. M. Spiridonov, G. Ya. Pushkina, L. N. Komissarova // Zhurn. neorgan. khimii. − 2010. − T. 55, № 12. − C. 1945—1948.
4. Manashirov, O. Ya. Sintez i issledovanie IK−lyuminestsentsii tverdykh rastvorov (Y1−xYbx)2O3 pri lazernom vozbuzhdenii / O. Ya. Manashirov, V. A. Vorob'ev, B. M. Sinel'nikov, E. M. Zvereva // Vestn. SevKavGTU. − 2011. − № 8. − S. 14—24.
5. Chugunova, M. M. Lyuminestsentnye svoystva prozrachnykh keramik Y3Al5O12 : Yb / M. M. Chugunova, I. A. Kamenskikh, V. V. Mikhaylin, S. A. Usenko // Optika i spektroskopiya. − 2010. − T. 109, № 6. − S. 925—957.
6. Esmaeilzadeh, M. Experimental study on temperature dependence of absorption and emission properties of Yb : YAG crystal as a disk laser medium / M. Esmaeilzadeh, H. Roohbakhsh, A. Ghaedzadeh // World Acad. of Sci., Eng. and Technol. − 2012. − V.−63. − P. 436—439.
7. Schmitt, R. L. Design and performance of a high−repetition−rate single−frequency Yb : YAG microlaser / R. L. Schmitt, Binh T. Do // Proc. of SPIE. − 2008 − V. 6871. − P. 39—48
8. Niklas, A. Disclosure of defects in YAG crystals by the thermoluminescence method / A. Niklas // Appl. Phys. − 1984. − V. 35. − P. 249—253
9. Taira, T. Modeling of quasi−three−level lasers and operation of cw Yb : YAG lasers / T. Taira, W. M. Tulloch, R. L. Byer // Appl. Optics. − 1997. − V. 36, N 9. − P. 1867—1874
10. van Pieterson, L. Charge transfer luminescence of Yb3+ / L. van Pieterson, M. Heeroma, E. de Heer, A. Meijerink // J. of Luminescence. − 2000. − V. 91. − P. 177—193.
11. Laversenne, L. Optimization of spectroscopic properties of Yb3+−doped refractory sesquioxides: cubic Y2O3, Lu2O3 and monoclinic Gd2O3 / L. Laversenne, Y. Guyot, C. Coutaudier // Optical Mater. − 2001. − V. 16. − P. 475—483.
12. Dexter, D. L. A theory of sensitized luminescent in solids / D. L. Dexter // J. Chem. Phys. − 1953. − V. 21, N 5. − P. 836—850.
13. Dexter, D. L. Theory of concentration quenching in inorganic phosphors / D. L. Dextrer, L. Shulman // J. Chem. Phys. − 1954. − V. 22, N 6. − P. 1064—1070.
14. Poluektov, N. S. Opredelenie mikrokolichestv lantanoidov po lyuminestsentsii kristallofosforov / N. S. Poluektov, N. P. Efryushina, S. A. Gava. − Kiev : Naukova dumka, 1976. − 212 s.
15. Boulon, G. Why so deep research on Yb3+−doped optical inorganic materials? / G. Boulon // J. Alloys and Compounds. − 2008. − V. 452. − P. 1—11.
16. Yoshikawa, A. Growth and spectroscopic analysis of Yb3+− doped Y3Al5O12 fiber single crystals / A. Yoshikawa, G. Boulon, L. Laversenne // J. Appl. Phys. − 2003. − V. 94. − R. 5479—5488.
17. Bensalah, A. Spectroscopic properties of Yb3+ : LuLiF4 crystal growth by the Gzochralski method for laser applications and evaluation of quenching processes: a comparison with Yb3+ : LuLiF4 / A. Bensalah, Y. Guyot, A. Brenier // J. Alloys and Compounds. − 2004. − V. 380 − P. 15—26.
18. Zhang, L. Evaluation of spectroscopic properties of Yb3+ in tetraphosphate glass / L. Zhang, H. Hu // J. Non−Cryst. Solids. − 2001. − V. 292. − P. 108—114.
19. Boulon, G. Radiactive and non−radiactive energy transfers in Yb3+−doped sesquioxide and garnet laser crystals from combinatorial approach based on gradient concentration fibers / G. Boulon, L. Laversenne, C. Goutaudier // J. Luminescence. − 2003. − V. 102−103. − P. 417—425.
20. DeLoach, L. D. Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications / L. D. DeLoach, S. A. Payne, L. L. Chase // JEEE J. Quantum Electronics. − 1993. − V. 29, N 4. − P. 1179—1191.

Language of full-text russian
Full content Buy
Back