MAGNESIUM, TITANIUM, RARE METALS, SEMICONDUCTORS | |
ArticleName | Behaviour of elements during the aluminothermic reduction of eudialyte concentrate |
ArticleAuthor | Krasikov S. A., Upolovnikova A. G., Agafonov S. N., Zhidovinova S. V., Matveev V. A. |
ArticleAuthorData | Institute of Metallurgy of Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia: S. A. Krasikov, Leading Researcher, e-mail: sankr@mail.ru
I. V. Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, Apatity, Russia: V. A. Matveev, Head of Laboratory |
Abstract | The phase transformation features of eudialite concentrate components in aluminothermic reduction in the temperature range from 100 to 2000 oC are investigated by the methods of thermodynamic modeling, differential thermal analysis and X-ray analysis. It is established that temperature is not the dominant factor for the process possibility, and consecutive reduction of metals with formation of silicides of iron, niobium, titanium, zirconium takes place with increase of aluminium consumption, as well as extraction of free iron, manganese and silicon. Interaction reactions pass to kinetically active stage of reaction after formation of liquid aluminum. Experiments on aluminothermic reduction of eudialite concentrate, conducted in the laboratory furnace of resistance, with a certain approach confirmed a thermodynamic assessment and results of differential thermal analysis and showed the prospects of application of the stage of aluminothermic reduction in the technology of complex processing of eudialite raw materials. The alloys containing 15–30% of iron, 5–6% of manganese, 15–21% of zirconium and 5–6% titanium, and applicable for use as alloying compositions in production of special steels. These alloys were obtained at melting of charge materials containing concentrate, aluminum and additives of flux components in the form of oxide and fluoride of calcium. Zirconium extraction in an alloy achieved more than 70%, while extraction of titanium, manganese and niobium achieved more than 80%. The X-ray phase analysis showed existence of a free form of silicon, iron silicides, manganese, titanium and zirconium in the alloys. Strontium, rare-earth metals and radionuclides in the form of uranium and thorium passed almost completely in slag after concentrate reduction by aluminum. |
keywords | Eudialite concentrate, aluminothermic reduction, thermodynamic calculations, differential thermal analysis, diffractogram, fusion, separation, alloy, silicides, slag |
References | 1. Lebedev V. N. Zhurnal prikladnoy khimii – Russian Journal of Applied Chemistry. 2003. Vol. 76, Iss. 10. pp. 1601–1605. |
Language of full-text | russian |
Full content | Buy |