Journals →  Tsvetnye Metally →  2014 →  #6 →  Back

HEAVY NON-FERROUS METALS
ArticleName Investigation of influence of roasting parameters of sulfide copper-nickel concentrate on material composition of obtained cinder
ArticleAuthor Savinova Yu. A., Portov A. B., Tsemekhman L. Sh.
ArticleAuthorData

“Gipronickel Institute” LLC, Saint Petersburg, Russia:

Yu. A. Savinova, Junior Researcher
A. B. Portov, Researcher
L. Sh. Tsemekhman, Head of Laboratory of Pyrometallurgy, e-mail: LST@nikel.spb.su

Abstract

One of methods of smelting shop reconstruction at Kola MMC is transfer to a charge autogenous calcinating, based on coppernickel sulfide concentrate in fluidized bed furnaces with further smelting in ore-thermal furnace and converting of resulted matte. According to the indicated scheme, some specified requirements to cinder content (first of all for residual sulfur content and for deeply oxidized components (spinel and ferrite)) are revealed during the material processing. According to the present study, a number of laboratory tests of concentrate calcinating in fluidized bed furnace is carried out. The aim of the tests is determination of calcinating optimal conditions, which provide cinder production, suitable for further pyrometallurgical treatment. The article describes the results of material composition analysis of initial copper-nickel concentrate and its calcinating products. The study used the methods of scanning electron microscopy and electron probe microanalysis (SEM and EPM). There is found that the principle cinder components are sulfate-spinel conglomerates, oxidized, oxysulfide and sulfide particles. Dependence of cinder material composition on temperature (650–950 oC) and calcinating duration (30–120 min) is studied. It is demonstrated that, first of all, cinder material composition, depending on process temperature and calcinating duration, has no considerable influence on cinder composition and structure. A clear tendency of volume ratio growth of components with deeper oxidation degree is marked with increasing of temperature. Method of material loading into furnace has an appreciable influence: distributed loading under otherwise equal conditions provides more uniform and predictable material oxidation.

keywords Sulfide concentrate, copper-nickel concentrate, oxidizing calcinating, fluidized bed furnace, autogenous process, cinders, material composition, spinels, oxysulfides, scanning electron microscopy
References

1. Salt B., Cerilli E. Converter aisle improvements at Xstrata Nickel’s Sudbury smelter. Proceedings of International Symposium “Nickel and Cobalt 2009”. Sundbury, Canada, 23–26 August 2009. pp. 333–349.
2. Issledovat protsess obzhiga rudnogo medno-nikelevogo kontsentrata v pechi kipyashchego sloya i plavku ogarka v elektropechi : otchet o nauchno-issledovatelskoy rabote (Research of process of roasting of ore copper-zinc concentrate in fluid-bed furnace and cinder fusion in electric furnace : report about scientific-technical work). “Gipronickel Institute” LLC. Head of proceeding : V. V. Klementev. Saint Petersburg, 1998. 117 p.
3. Crundwell F., Moats M. S. et al. Smelting of nickel sulfide concentrates by roasting and electric furnace smelting. Extractive metallurgy of nickel, cobalt and platinum-group metals. Amsterdam : Elsevier, 2011. pp. 199–207.
4. Vanyukov A. V., Utkin N. I. Kompleksnaya pererabotka mednogo i nikelevogo syrya (Complex processing of copper and nickel raw materials). Chelyabinsk : Metallurgiya, 1988. 432 p.
5. Krishtal M. M., Yasnikov I. S., Polunin V. I., Filatov A. M., Ulyaninkov A. G. Skaniruyushchaya elektronnaya mikroskopiya i rentgenospektralnyy mikroanaliz v primerakh prakticheskogo primeneniya (Scanning electron microscopy and x-ray spectral microanalysis on example of practical application). Moscow : Tekhnosfera, 2009. 208 p.
6. Joseph I. Goldstein, Dale E. Newbury, Patrick Echlin et al. Rastrovaya elektronnaya mikroskopiya i rentgenospektralnyy mikroanaliz : perevod s angliyskogo (Scanning electron microscopy and x-ray microanalysis : translated from English). Under the editorship of V. I. Petrov. Moscow : Mir, 1984. Part 1. 296 p. ; Part 2. 348 p.
7. Joseph I. Goldstein, Harvey Yakowitz. Prakticheskaya elektronnaya mikroskopiya : perevod s angliyskogo (Practical electron microscopy : translated from English). Under the editorship of V. I. Petrov. Moscow : Mir, 1978. 656 p.
8. Ertseva L. N. Tsvetnye Metally — Non-ferrous metals. 2011. No. 8/9. pp. 86–91.
9. Tsemekhman L. Sh., Fomichev V. B., Ertseva L. N., Kaytmazov N. G., Kozyrev S. M., Maksimov V. I., Shneerson Ya. M., Dyachenko V. T. Atlas mineralogicheskogo syrya, tekhnologicheskikh produktov i tovarnoy produktsii Zapolyarnogo filiala Otkrytogo aktsionernogo obshchestva Gorno-metallurgicheskiy kombinat “Norilskiy nikel” (Atlas of mineralogical raw materials, technological products and marketable products of Polar Division of “Norilsk Nickel” MMC). Moscow : Ore and Metals, 2010. 336 p.
10. Savinova Yu. A., Popov V. A., Tsemekhman L. Sh., Chumakov Yu. A. Tsvetnye Metally — Non-ferrous metals. 2012. No. 11. pp. 48–52.
11. Savinova Yu. A., Tsemekhman L. Sh., Portov A. B. Tsvetnye Metally — Non-ferrous metals. 2013. No. 7. pp. 40–45.
12. Artemev N. I., Danilin L. A., Zaytsev N. G., Prikhodko E. A., Shurchkova V. A. Tsvetnye Metally — Non-ferrous metals. 1980. No. 1. pp. 50–52.
13. Pestunova N. P., Ogienko A. S., Guzairov R. S. Tsvetnye Metally — Non-ferrous metals. 1980. No. 1. pp. 48–50.
14. Metserinta M.-L., Taskinen P., Nyberg J., Ohvo E. Tsvetnye Metally — Non-ferrous metals. 2005. No. 5. pp. 92–99.

Language of full-text russian
Full content Buy
Back