Journals →  Tsvetnye Metally →  2014 →  #8 →  Back

METAL PROCESSING
ArticleName Mechanical properties and structure of titanium alloy VT41 (ВТ41)
ArticleAuthor Belyaev M. S., Gorbovets M. A., Kashapov O. S., Khodinev I. A.
ArticleAuthorData

All-Russian Scientific Research Institute of Aviation Materials, Moscow, Russia:

M. S. Belyaev, Leading Researcher, e-mail: bms-oti@mail.ru
M. A. Gorbovets, Head of a Sector
O. S. Kashapov, Leading Engineer
I. A. Khodinev, First Category Engineer

Abstract

There was researched the dependence of main strength characteristics (including the fatigue crack growth rate) from the structural state of heat-resistant titanium alloy VT41 (ВТ41) at the temperatures of 20 oC and 600 oC. Research was carried out on the samples, made of forgings, manufactured by two different schemes: with final deformation at onephase and two-phase area temperatures. According to this, there were obtained the coarse plate-like and fine globular plate-like structures. The globular plate-like structure has more complex structural-phase state, which is substantiated by application of stepwise mode of thermal processing. The paper provides a detailed description of obtained structures, phase composition and basic mechanical properties. The fatigue crack growth rate tests were carried out under eccentric tension of compact sample with dimensions of 60×62×10 mm. The test procedure corresponds to Russian technical standards, and to the ASTM E647–08 standard. Having both test temperatures, the plastic-like structure alloy VT41 has a slower rate of fatigue cracks development, than the fine globular plate-like structure alloy VT41. At the same time, increase of test temperature from 20 oC to 600 oC causes a reduction in fatigue crack growth rate. The defined difference of fatigue crack growth rate of material with various structure parameters is primarily substantiated by the beta-grain size. The rate of fatigue crack of globular plate-like structure alloy grows with disperse releases of silicides on interphase boundaries, formed by double annealing, and with the presence of Ti3Al phase. Comparison of lamellar structure alloy VT41 and heat-resistant titanium alloy in the same IMI-834 class showed that at the test temperature of 600 oC, characteristics of fatigue crack growth rate are similar. At the test temperature of 20 oC, VT41 alloy has higher fatigue crack growth rate values.

keywords Strength characteristics, fatigue crack growth rate, test temperature, heat-resistant titanium alloy, VT41 alloy, laminar structure, globular plate-like structure
References

1. Kablov E. N. Strategicheskie napravleniya razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda (Strategic ways of development of materials and their processing technologies for the period till 2030). V sbornike: Aviatsionnye materialy i tekhnologii : yubileynyy nauchno-tekhnicheskiy sbornik (prilozhenie k zhurnalu “Aviatsionnye materialy i tekhnologii”) (In the collection: Aviation materials and technologies : anniversary scientific-technical collection (application to the journal “Aviation materials and technologies”)). 2012. pp. 7–17.
2. Prokhodtseva L. V., Erasov V. S., Lavrova O. Yu., Lavrov A. V. Vliyanie formy tsikla na ustalostnye svoystva i mikrostroenie izlomov titanovogo splava VT3-1 (Influence of the cycle type on fatigue properties and microstructure of titanium alloy VTZ-1 fractures). Aviatsionnye materialy i tekhnologii = Aviation materials and technologies. 2012. No. 2. pp. 54–59.
3. Tumanov N. V., Porter A. M., Lavrenteva M. A., Cherkasova S. A, Vorobeva N. A., Leshin D. P. Mnogomasshtabnaya kompleksnaya fraktodiagnostika razrusheniya diskov kompressora aviadvigateley (Large-scale complex fraction diagnostics of destruction of aircraft engine compressor disks). Vestnik Samarskogo Gosudarstvennogo Aerokosmicheskogo Universiteta = Bulletin of Samara State Aerospace University. 2010. No. 4. pp. 98–111.
4. Antipov V. V. Strategiya razvitiya titanovykh, magnievykh, berillievykh i alyuminievykh splavov (Strategy of development of titanium, magnesium, berillium and aluminium alloys). V sbornike: Aviatsionnye materialy i tekhnologii : yubileynyy nauchno-tekhnicheskiy sbornik (prilozhenie k zhurnalu “Aviatsionnye materialy i tekhnologii”) (In the collection: Aviation materials and technologies : anniversary scientifictechnical collection (application to the journal “Aviation materials and technologies”)). 2012. pp. 157–166.
5. Kashapov O. S., Novak A. V., Nochovnaya N. A., Pavlova T. V. Sostoyanie, problemy i perspektivy sozdaniya zharoprochnykh titanovykh splavov dlya detaley gazoturbinnykh dvigateley (State, problems and prospects of creation of heat-resistant titanium alloys for components of gas-turbine engines). Trudy Vserossiyskogo Instituta Aviatsionnykh Materialov = Proceedings of All-Russian Institute of Aviation Materials. 2013. No. 3. Available at: http://viam-works.ru/ru/articles?art_id=20.
6. Kablov E. N., Zakharov Yu. I., Nochovnaya N. A., Tuzova E. V. Sposob termicheskoy obrabotki vysokoprochnykh (α + β)-titanovykh splavov (Method of thermal processing of high-strength (α + β)-titanium alloys). Patent RF, No. 2465366, MPK С 22 F 1/18. Applied: September 15, 2011. Published: October 27, 2012. Bulletin No. 30.
7. Kablov E. N., Moiseev N. V., Skugorev A. V., Ponomarenko D. A., Lebedev D. Yu. Sposob polucheniya izdeliya konstruktsii “blisk” iz zharoprochnykh titanovykh splavov (Method of obtaining of “blisk” structure product from heat-resistant titanium alloys). Patent RF, No. 2465367, MPK С 22 F 1/18. Applied: September 15, 2011. Published: Oktober 27, 2012. Bulletin No. 30.
8. Prokhodtseva L. V., Filonova E. V., Naprienko S. A., Moiseeva N. S. Issledovanie zakonomernostey razvitiya protsessov razrusheniya pri tsiklicheskom nagruzhenii splava VT41 (Research of regularities of development of destruction processes in the time of cyclic loading of alloy VT 41). V sbornike: Aviatsionnye materialy i tekhnologii : yubileynyy nauchno-tekhnicheskiy sbornik (prilozhenie k zhurnalu “Aviatsionnye materialy i tekhnologii”) (In the collection: Aviation materials and technologies : anniversary scientific-technical collection (application to the journal “Aviation materials and technologies”)). 2012. pp. 407–412.
9. OST 1-90013—81. Splavy titanovye. Marki (Branch Standard 1-90013—81. Titanium alloys. Grades). Introduced: July 01, 1981.
10. Alekseev A. A., Lukina E. A., Klochkova Yu. Yu. Kristallicheskaya struktura sverkhtonkikh plastinchatykh vydeleniy (Crystalline structure of ultra-fine lamellar precipitates). Fizika metallov i metallovedenie = The Physics of Metals and Metallography. 2013. Vol. 114, No. 3. pp. 1–7.
11. Chabina E. B., Alekseev A. A., Filonova E. V., Lukina E. A. Primenenie metodov analiticheskoy mikroskopii i rentgenostrukturnogo analiza dlya issledovaniya strukturno-fazovogo sostoyaniya materialov (Application of methods of analytical microscopy and X-ray structural analysis for research of structural-phase state of materials). Trudy Vserossiyskogo instituta aviatsionnykh materialov = Proceedings of All-Russian Institute of Aviation Materials. 2013. No. 5. Available at: http://viam-works.ru/ru/articles?art_id=37.
12. Singh V., Singh N., Sai Srinadh K. Role of Ti3Al/silicides on tensile properties of Timetal 834 at various temperatures. Bulletin of Materials Science. 2007. Vol. 30, No. 6. pp. 596–600.
13. Popov A. A., Narygina I. V., Popova M. A. Vliyanie sposoba termicheskoy obrabotki na formirovanie struktury i svoystv zharoprochnykh splavov titana (Influence of method of thermal processing on formation of structure and properties of heat-resistant titanium alloys). Metallovedenie i termicheskaya obrabotka metallov = Metal Science and Heat Treatment. 2012. No. 12. pp. 20–23.
14. Popov A. A., Rossina N. G., Popova M. A., Volkov A. V. Protsessy uporyadocheniya v zharoprochnykh titanovykh splavakh (Regulation processes in heat-resistant titanium alloys). Titan = Titanium. 2011. No. 1. pp. 36–42.
15. Titanium and titanium alloys. Fundamentals and Applications. Editors: C. Leyens, M. Peters. Weinheim : WILEY-VCH Verlag GmbH & Co. KGaA, 2003. pp. 19–36.
16. GOST 1497—84. Metally. Metody ispytaniy na rastyazhenie (State Standard 1497—84. Metals. Pull test methods). Introduced: January 01, 1986.
17. GOST 9651—84. Metally. Metody ispytaniy na rastyazhenie pri povyshennykh temperaturakh (State Standard 9651—84. Metals. Pull test methods with increased temperatures). Introduced: January 01, 1986.
18. Potapov S. D., Perepelitsa D. D. Sposob obrabotki rezultatov ispytaniy obraztsov na skorost rosta treshchiny ustalosti pri postoyannoy amplitude nagruzheniya (Method of processing of results of fatigue crack growth rate tests of samples with constant amplitude loading). Vestnik Moskovskogo aviatsionnogo instituta = Bulletin of Moscow Aviation Institute. 2012. Vol. 19, No. 2. pp. 94–100.
19. Gorbovets M. A., Belyaev M. S., Khodinev I. A. Vliyanie ekspluatatsionnoy temperatury na skorost rosta treshchiny ustalosti v intermetallidnom titanovom splave (Influence of exploitation temperature on fatigue crack growth rate in intermetallide titanium alloy). Aviatsionnye materialy i tekhnologii = Aviation materials and technologies. 2013. No. 3. pp. 13–15.
20. Korsunsky A. V., Dini D. D., Walsh M. J. Fatigue crack growth rate analysis in a titanium alloy. Key Engineering Materials Vols. 2008. Vol. 385–387. pp. 5–8.
21. ASTM E647–08. Standard Test Method for Measurement of Fatigue Crack Grouth Rates. 2008.
22. Kumar V., Nagalaxmi G. Fatigue Crack Growth Behavior of a near a IMI-834 Titanium Alloy at Elevated Temperature. Reports of the 11-th International Conference of Fracture. Turin, 2008. pp. 58–64.

Language of full-text russian
Full content Buy
Back