Metallurgy and automotive industry | |
ArticleName | Forging industry rises automotive lightweight design potential |
ArticleAuthor | H.-W. Raedt, F. Wilke, Ch.-S. Ernst |
ArticleAuthorData | Hirschvogel Automotive Group (Denklingen, Germany): H.-W. Raedt, Dr.-Ing., Vice President Advanced Engineering
Deutsche Edelstahlwerke GmbH (Siegen, Germany): F. Wilke, Mag. Eng., Vice President Technical Consulting
Institut für Kraftfahrzeuge (ika), RWTH Aachen University (Aachen, Germany): Ch.-S. Ernst, Mag. Eng., Mag. Econ., Head of Project, Automotive Institut (ika) |
Abstract | Forging processes (hot, warm and cold) are used to produce several impor-tant components in automotive engineering applications. When awarding contracts, the lowest price is often the decisive criterion; innovations are either not enquired about, or part and system development is already so far advanced at the time of the enquiry that it is too late to incorporate lightweight design proposals. The Lightweight Forging Initiative was set up to highlight to the professional world the contributions which forging makes to the automotive megatrend of lightweight design. The presented results reveal innovative potential of such industrial branches as steelmaking and metal forming for non-sheet materials. Innovative balance connected with materials, constructions and deformation technology shows that substantial mass decrease by 42 kg can be achieved on the researched vehicle. It should be mentioned that secondary potentials of lightweight constructions are not taken into account. It is important that the technology of steel materials production and metal forming allow to realize the lightweight construction with expenses per kg of mass saving lower than the required investments in the new corre-sponding equipment. Several potentials are characterized even by zero expenses, thereby such lightweight constructions are very efficient and can make serious in-put in lowering general CO2 emissions. |
keywords | Lightweight construction, automotive vehicles, forging, steels, non-sheet materials, metal forming, mass decrease, expenses |
References | 1. Raedt, H.-W.; Speckenheuer, U.; Vollrath, K.: ATZ 114 (2012) Nr. 3, S. 200/205. |
Language of full-text | russian |
Full content | Buy |