Journals →  Tsvetnye Metally →  2014 →  #11 →  Back

NANOSTRUCTURED METALS AND MATERIALS
ArticleName Nanostructured metallic materials with nickel- and palladium- based amorphous and crystalline structure
ArticleAuthor Churyumov A. Yu., Ketov S. V., Bazlov A. I., Luzgin D. V.
ArticleAuthorData

National University of Science and Technology “MISiS”, Moscow, Russia:

A. Yu. Churyumov, Assistant Professor, (Chair of Physical Metallurgy of Non-Ferrous Metals), e-mail: churyumov@misis.ru
A. I. Bazlov, Student, (Chair of Physical Metallurgy of Non-Ferrous Metals)

 

Tohoku University, Sendai, Japan:

S. V. Ketov, Researcher
D. V. Luzgin, Professor

Abstract

Nickel-based nanocrystalline samples and nickel- and palladium-based nanostructure amorphous samples were obtained by magnetron sputter deposition with following research. Both amorphous and crystalline particles have a size of ~10 nm. The grain size is increased by 1.5 times by increasing of spraying time from 1 to 5 minutes. Palladium is the potentialdefinition element in the researched system, which is explained by relatively high positive values of system electrode potential in initial (108 mV) and stationary (184 mV) states. Stable positive potential shift of the system, observed during exposure, indicates the formation of protective products of interaction with corrosive-active medium on the sample surface. Assessment of changes in sample weight showed that even under anodic polarization in the area, close to stationary corrosion potential, the dissolution rate in given biological corrosion-active environment is very low. Due to its unique properties, amorphous structure coating has broad application prospects. Due to its high corrosion resistance in Hank's solution, Pd – Zr coating can be particularly used as coating for bioimplantants. Due to their ramified surface and nanosizes, nickel- and palladium-based nanostructure and crystalline glasses can be used as catalysts for chemical reactions.

keywords Magnetron sputtering, nanoparticles, amorphous structure, corrosion resistance, X-ray analysis, nanoclusters
References

1. Gleiter H. Progress in Materials Science. 1989. Vol. 33. p. 223.
2. Choy K. L. Progress in Materials Science. 2003. Vol. 48. pp. 57–170.
3. Comber P. G., Le Madan A., Spear W. E. Electronic and structural properties of amorphous semiconductors. London, New York : Academic press, 1973. 273 p.
4. Znamenskiy A. G., Marchenko V. A. Zhurnal tekhnicheskoy fiziki = Journal of Applied Physics. 1998. Vol. 68. p. 7.
5. Kashtanov P. V., Smirnov B. M., Khippler R. Uspekhi fizicheskikh nauk = Advances in Physical Sciences. 2007. Vol. 177. pp. 73–510.
6. Elliot S. R. Physics of amorphous materials. Harlow : Longman Group, 1990.
7. Ebrahimi F., Bourne G. R., Kelly M. S., Matthews T. E. Nanostructured Materials. 1999. Vol. 11. p. 343.
8. Fecht H. J. Nanostructured Materials. 1995. Vol. 6. p. 33.
9. Valiev R. Z. Materials Science and Engineering A. 1997. Vol. 234. p. 59.
10. Inoue A. Acta Materialia. 2000. Vol. 48. p. 279.
11. Greer A. L. Science. 1995. Vol. 267. p. 1947.
12. Chen N., Frank R. et al. Acta Materialia. 2011. Vol. 59. pp. 6433–6440.
13. Chen N., Louzguine D. V., Xie G. Q., Sharma P., Perepezko J. H., Esashi M., Yavari A. R., Inoue A. Nanotechnology. 2013. Vol. 24, No. 4. pp. 045610–045701.
14. Liu L., Zhu J. B., Hou C., Li J. C., Jiang Q. Materials and Design. 2012. Vol. 46. pp. 675–679.
15. Kinoshita H., Kubota M., Ohno G. Thin Solid Films. 2012. Vol. 523. pp. 52–54.
16. Zou C. W., Wang H. J., Li M., Yu Y. F., Liu C. S., Guo L. P., Fu D. J. Vacuum. 2010. Vol. 84. pp. 817–822.
17. Andersson M., Högström J. et al. Vacuum. 2012. Vol. 86. pp. 1408–1416.
18. Li X. N., Li S. B., Nie L. F., Li H., Dong C., Jiang X. Thin Solid Films. 2010. Vol. 518. pp. 7390–7393.
19. Chen N., Shi X., Witte R., Nakayama K. S., Ohmura K., Wu H., Takeuchi A., Hahn H., Esashi M., Gleiter H., Inoue A., Louzguine D. V. Journal of Materials Chemistry B. 2013. Vol. 1. pp. 2568–2574.
20. Egami T., Waseda Y. Journal of Non-Crystalline Solids. 1984. Vol. 64. pp. 113–117.
21. Louzguine D. V., Inoue A. Journal of Non-Crystalline Solids. 2004. Vol. 337. pp. 161–165.
22. Laerte Patera L., Africh C., Weatherup R. S., Blume R., Bhardwaj S., Castellarin-Cudia C., Knop-Gericke A., Schloegl R., Comelli G., Hofmann S., Cepek C. ACS Nano. 2013. Vol. 7. pp. 7901– 7912.
23. Cabrera N., Mott N. F. Reports on Progress in Physics. 1949. Vol. 12. pp. 163–169.
24. Hauffe K., Ilschner B. Z. Elekrtochem. 1954. Vol. 58. pp. 382–388.
25. Zhukova Yu. S., Pustov Yu. A., Filonov M. R. Fizikokhimiya poverkhnosti i zashchita materialov = Protection of Metals and Physical Chemistry of Surfaces. 2012. Vol. 48. pp. 267–274.
26. Pustov Yu. A., Koshkin B. V., Kutyrev A. E. Korroziya i zashchita metallov v vodnykh sredakh. Praktikum (Corrosion and protection of metals in water medium. Practicum). Moscow : Ucheba, 2005. 101 p.

Language of full-text russian
Full content Buy
Back