ArticleName |
Pressure oxidation of double refractory
raw materials in the presence of limestone |
Abstract |
Pressure oxidation allows to carry out the efficient processing of goldbearing sulfide materials. However, application of this method for processing of double refractory raw materials leads to irreversible gold losses due to autoclave preg-robbing of gold by organic carbon. Thermodynamic and experimental data indicate that almost complete sulfide decomposition leads to a high value of reduction-oxidation potential. At this value, the partially oxidized gold, revealed from sulfides, is further oxidized and dissolved within formation of tetrachloroaurate (III) (even in the presence of small amounts of chloride ion). Gold (in the form of chloride complex) is sorbed by organic carbon and becomes unavailable for subsequent cyanidation. In this paper, there are reviewed the methods, practiced in the gold industry to remove the autoclave preg-robbing. Laboratory studies demonstrate that limestone or lime addition to double refractory concentrate before pressure oxidation lead to decrease of the POX solution acidity. Furthermore, the limestone addition reduces the oxygen partial pressure due to formation and evolution of carbon dioxide to autoclave gaseous phase. These leads to the decrease of redox potential of oxidized slurry thereby reducing the gold solubility, gold preg-robbing by organic carbon under POX conditions, and allows to increase precious metal recovery via cyanidation. |
References |
1. Miller J. D., Wan R., Diaz X. Preg-robbing gold ores. Developments in Mineral Processing. 2005. Vol. 15. pp. 937–972. 2. Polyus Gold International. Annual Report 2013. Available at: http://www.polyusgold.com/upload/investors/annual_reports/pgil-ar-2013-final.pdf. 3. Polymetal International PLC. Annual Report 2013. Available at: http://www.polymetalinternational.com/investors-and-media/annual-reports.aspx?sc_lang=en. 4. Samokhvalova A. R. Voprosy pererabotki upornykh rud i rentabelnosti (Issues of refractory ore processing and profitability). Materialy konferentsii “Zoloto i tekhnologii” (Materials of conference “Gold and Technologies”). Moscow, 2014. pp. 6–8. 5. Chryssoulis S. L., McMullen J. Mineralogical investigation of gold ores. Developments in Mineral Processing. 2005. Vol. 15. pp. 21–72. 6. Adams M. D., Burger A. M. Characterization and blinding of carbonaceous preg-robbers in gold ores. Minerals Engineering. 1998. Vol. 11, No. 10. pp. 919–927. 7. Brooy S. R. La, Linge H. G., Walker G. S. Review of gold extraction from ores. Minerals Engineering. 1994. Vol. 7, No. 10. pp. 1213–1241. 8. Fraser K. S., Walton R. H., Wells J. A. Processing of refractory gold ores. Minerals Engineering. 1991. Vol. 4, No. 7/11. pp. 1029–1041. 9. Simmons G. L. Pressure oxidation process development for treating carbonaceous ores at Twin Creeks. Randol Gold Forum. Golden, 1996. pp. 199–208. 10. Chan T. et al. Pilot plant pressure oxidation of refractory gold-silver concentrate from Eldorado Gold Corporation’s Certej project in Romania. Proceedings of the 7th International Symposium of Hydrometallurgy 2014. Victoria, 2014. pp. 601–612. 11. Ketcham V. J., O’Reilly J. F., Vardill W. D. The Lihir gold project; Process plant design. Minerals and Metallurgical Processing. 1993. Vol. 6, No. 8/10. pp. 1037–1065. 12. Collins M. J. et al. The Lihir gold project: Pressure oxidation process development. Proceedings of the 4th International Symposium of Hydrometallurgy 1993. Salt Lake City, 1993. pp. 611–628. 13. Simmons G. L. et al. Pressure oxidation problems and solutions: Treating carbonaceous gold ores contarning trace amounts of chlorine (halogens). Mining Engineering. 1998. Vol. 50. pp. 69–73. 14. Fomenko I. et al. The oxidized gold and its role in pressure oxidation of double refractory gold concentrates. Proceedings of ALTA 2014 Gold-Precious Metals Session. Perth, 2014. pp. 194–202. 15. Gathje J. C., Simmons G. L. Method for pressure oxidizing goldbearing refractory sulfide ores having organic carbon. Patent US, No. 5851499. Published: December 22, 1998. 16. Fomenko I. V. et al. Termodinamicheskoe opisanie povedeniya zolota pri avtoklavnom okislenii sulfidnykh kontsentratov (Thermodynamic description of gold behavior during pressure oxidation of sulfide concentrates). Sbornik dokladov V Mezhdunarodnogo kongressa “Tsvetnye metally — 2013” (Collection of reports of the V International Congress “Non-ferrous metals-2013”). Krasnoyarsk : Verso, 2013. pp. 381–385. 17. Machesky M. L., Andrade W. O., Rose A. W. Adsorption of gold(III)-chloride and gold(I)-thiosulfate anions by goethite. Geochimica et Cosmochimica Acta. 1991. Vol. 55, No. 3. pp. 769–776. 18. Vlassopoulos D., Wood S. A. Gold speciation in natural waters: I. Solubility and hydrolysis reactions of gold in aqueous solution. Geochimica et Cosmochimica Acta. 1990. Vol. 54, No. 1. pp. 3–12. 19. Zaytsev P. et al. Specifics of double refractory gold concentrates pressure oxidation in the presence of chlorides. Proceedings of the 7th International Symposium of Hydrometallurgy 2014. Victoria, 2014. pp. 501–514. 20. Qing Liu J., Nicol M. J. Thermodynamics and kinetics of the dissolution of gold under pressure oxidation conditions in the presence of chloride. Canadian Metallurgical Quarterly. 2002. Vol. 41, No. 4. pp. 409–415. 21. Zaytsev P. V., Fomenko I. V., Pleshkov M. A., Chugaev L. V., Shneerson Ya. M. Osobennosti avtoklavnogo okisleniya zolotosulfidnykh uglerodsoderzhashchikh kontsentratov v prisutstvii khloridov (Peculiarities of pressure oxidation of gold-sulfide carbon-containing concentrates in the presence of chlorides). Tsvetnye Metally = Non-ferrous metals. 2014. No. 4. pp. 11–16. 22. Fomenko I. V., Shneerson Ya. M., Chugaev L. V., Pleshkov A. M. Mekhanizm formirovaniya poter zolota pri avtoklavnom okislenii i posleduyushchem tsianirovanii kontsentratov dvoynoy upornosti (Mechanism of formation of gold losses during pressure oxidation and following cyanidation of double refractory concentrates). Sbornik dokladov IV Mezhdunarodnogo kongressa “Tsvetnye metally – 2012” (Collection of reports of the IV International congress “Non-ferrous metals — 2012”). Krasnoyarsk : Verso, 2012. pp. 590–597. 23. Vigdorchik E. M., Sheynin A. B. Matematicheskoe modelirovanie nepreryvnykh protsessov rastvoreniya (Mathematical modeling of continuous dissolution processes). Leningrad : Khimiya, 1971. 248 p. 24. Simmons G. L., Gathje J. C. Method for processing gold-bearing sulfide ores involving preparation of a sulfide concentrate. Patent US, No. 5837210. Published: November 17, 1998. 25. Parker A. J. Modelling of Macraes POX Circuit. AMEC Minproc. Available at : http://www.minproc.com.au/deposit/documents/0000000297/AJ Parker Presentation 2.ppt. 26. La Brooy S. R., Cadzow M. D., Giraudo T. Start Up Of Pressure Oxidation At Macraes Gold Project. Proceedings of SME Annual Meeting. Salt Lake City, 2006. 27. Eichhorn M. et al. Capacity enhancement at Newmont Mining Corporation’s Twin Creeks whole ore pressure oxidation facility. Proceedings of the 7th International Symposium of Hydrometallurgy 2014. Victoria, 2014. pp. 735–749. 28. Zaytsev P. V., Chugaev L. V., Pleshkov M. A., Shneerson Ya. M., Klementev M. V. Avtoklavnoe okislenie zolotosoderzhashchikh kontsentratov dvoynoy upornosti (Pressure oxidation of double refractory goldbearing concentrates). Sbornik dokladov IV Mezhdunarodnogo kongressa “Tsvetnye metally – 2012” (Collection of reports of the IV International congress “Non-ferrous metals – 2012”). Krasnoyarsk : Verso, 2012. pp. 561–567. 29. Zaytsev P. et al. Pokrovskiy pressure oxidation (POX) hub // Proc. ALTA 2013 Gold Session. — Perth, 2013. P. 33–71. |