ArticleName |
Forecasting stability of well bore zones holding
radioactive waste containers |
Abstract |
Isolation of high-level radioactive waste (RAW) in deep geological formations means disposal of metal containers with radionuclides at a temperature higher than 200 °С. Placement of such containers in wells at a depth of over 500 m below surface involves long-term action of rock pressure and temperature on enclosing rocks; design solutions on structure of a RAW repository include preservation of insulating properties of enclosing rocks for a period over 10 thousand years. This article focuses on the analysis of stability of well bore zones, including methodical approach to substantiation of well pattern to ensure safe operation of a RAW repository. Placement of high-level radioactive waste in deep formations is the final stage of RAW disposal in rock masses, and is closely connected with the task to preserve insulating properties of rocks exposed to integrated effect of rock pressure and temperature for a period over 10 thousand years. According to estimates currently available, RAW containers at a temperature of 150–200 °С transmit heat in enclosing rock mass for 1000 years approximately. Thus, in the near zone of a deep radioactive waste repository, local temperature fields arise and gradually fade as a result of half-decay of radionuclides in RAW containers. The authors have developed a procedure for calculating local temperature fields generated as a consequence of heat emission from radionuclides in RAW containers. Predictive estimates of well spacing (more than 20 m) together with geodynamic zoning data can be included in a repository construction project. More accurate estimate of optimal well spacing needs detailed geological and geophysical studies, including capabilities to be offered by underground research laboratory later on. |
References |
1. Polyakov Yu. D., Lobanov N. F., Beygul V. P. Obespechenie bezopasnosti obektov okonchatelnoy izolyatsii dolgozhivushchikh radioaktivnykh otkhodov v Krasnoyarskom krae (Provision of safety of objects of final isolation of long-lived radioactive wastes in Krasnoyarsk Krai). Bezopasnost yadernykh tekhnologiy i okruzhayushchey sredy = Nuclear and environmental safety. 2014. No. 3-4. pp. 7–15. 2. Zhao H. G., Shao H., Kunz H. et al. Numerical analysis of thermal process in the near field around vertical disposal of high-level radioactive waste. Journal of Rock Mechanics and Geotechnical Engineering. 2014. No. 2, Vol. 6, Iss. 1. pp. 55–60. 3. Paul E. Mariner, Joon H. Lee, Ernest L. Hardin et all. Granite Disposal of U.S. High-Level Radioactive Waste. Sandia Report. Available at: http://prod.sandia.gov/techlib/access-control.cgi/2011/116203.pdf (accessed: October 05, 2015). 4. Zenkevich O. Metod konechnykh elementov v tekhnike (Finite element method in technics). Ripol Classic, 1975. 543 p. 5. Gallagher R. H. Metod konechnykh elementov: Osnovy (Finite element analysis: Fundamentals). Translated from English. Mosocw : Mir, 1984. 215 p. 6. Bathe K.-J., Wilson E. L. Chislennye metody analiza i metod konechnykh elementov (Numerical methods in finite element analysis). Moscow : Stroyizdat, 1982. 448 p. 7. Strang G., Fix G. J. Teoriya metoda konechnykh elementov (An analysis of the finite element method). Translated from English. Under the editorship of G. I. Marchuk. Moscow : Mir, 1977. 351 p. 8. Rudakov K. N. UGS Femap 9.3. Geometricheskoe i konechno-elementnoe modelirovanie konstruktsiy (UGS Femap 9.3. Geometry and finite-element modeling of designs). Kiev, 2009. 296 p. 9. Timoshenko S. P., Goodier J. N. Teoriya uprugosti (Theory of elasticity). Moscow : Nauka, 1975. 576 p. 10. Morozov V. N., Kolesnikov I. Yu., Belov S. V., Tatarinov V. N. Napryazhenno-deformirovannoe sostoyanie Nizhnekanskogo granitoidnogo massiva – rayona vozmozhnogo zakhoroneniya radioaktivnykh otkhodov (Stress-strain state of Nizhnekamsk granitoid massif – the region of possible radioactive waste disposal). Geoekologiya. Inzhenernaya geologiya. Gidrogeologiya. Geokriologiya = Environmental Geoscience. 2008. No. 3. pp. 232–243. 11. Brady P. V. et al. Deep borehole disposal of high-level radioactive waste. Sandia Report SAND2009-4401. Sandia National Laboratories. Albuquerque, New Mexico. 2009. 12. Gatewood B. E. Temperaturnye napryazheniya primenitelno k samoletam, snaryadam, turbinam i yadernym reaktoram (Thermal stresses. With applications to the airplanes, missiles, turbines and nuclear reactors). Moscow : ILIYa, 1959. 352 p. 13. Morozov V. N., Kolesnikov I. Yu., Tatarinov V. N. Modelirovanie urovney opasnosti napryazhenno-deformirovannogo sostoyaniya v strukturnykh blokakh Nizhnekanskogo granitoidnogo massiva (Modeling of the hazard levels of stress-strain state in structural blocks of Nizhnekamsk granitoid massif). Geoekologiya = Geoecology. 2011. No. 6. pp. 524–542. 14. Anderson E. B., Belov S. V., Kamnev E. N., Kolesnikov I. Yu., Lobanov N. F., Morozov V. N., Tatarinov V. N. Podzemnaya izolyatsiya radioaktivnykh otkhodov (Underground isolation of radioactive wastes). Moscow : Gornaya kniga, 2011. 592 p. 15. Morozov V. N., Belov S. V., Kolesnikov M. Yu., Tatarinov V. N., Tatarinova T. A. Vozmozhnosti geodinamicheskogo rayonirovaniya pri vybore mest podzemnoy izolyatsii vysokoaktivnykh radioaktivnykh otkhodov na primere Nizhnekanskogo massiva (Possibilities of geodynamic zoning during the choice of the places of underground isolation of high-level radioactive wastes on example of Nizhnekamsk massif). Inzhenernaya ekologiya = Engineering Ecology. 2008. No. 5. pp. 17–25. |