ArticleName |
3D modeling of pillar parameters in ore mining with room-and-pillar method |
ArticleAuthorData |
National Mineral Resources University—Mining University, Saint-Petersburg, Russia:
A. G. Protosenya, Head of a Department, Doctor of Engineering Sciences, e-mail: kaf-sgp@mail.ru A. N. Shokov, Researcher, Candidate of Engineering Sciences |
Abstract |
The article addresses a topical problem of calculating parameters of pillars in room-andpillar ore mining. It is suggested to use 3D modeling based on finite element method to predict stresses and strains in rocks. The developed 3D model of extraction of four blocks in an ore body allows accounting for the sequence of stoping, effective non-equicomponent gravitational and tectonic stress field, thickness and dip angle of the ore body, deformation and strength characteristics of enclosing rock mass and parameters of various purpose pillars. By way of illustration, the authors discuss an alternative method used in Nyurpakkh apatite-nepheline mine on the Kola Peninsula. On the assumption of preset pillar parameters, effective stresses and the related safety factors are calculated. It is revealed that the standard procedure in use to calculate room-and-pillar method parameters based on admissible spans of exposures yields overestimated values of safety factors for pillars and pillars are oversized as a result. In the framework of the proposed approach, the authors have reduced the cross section area of isolated interchamber pillars and the width of a crown (or inter-panel) pillar. In prospect, this universal finite-element model can assist in selection of room-and-pillar method parameters as function of depth of mining and variation in gravitational-tectonic stress field, which will enable optimization for size of various purpose pillars and will ensure safe mining. |
References |
1. Baranov A. O. Proektirovanie tekhnologicheskikh skhem i protsessov podzemnoy dobychi rud (Design of process flowsheets and underground ore mining processes). Moscow : Nedra, 1993. 283 p. 2. Volkov Yu. V., Sokolov I. V. Optimizatsiya podzemnoy tekhnologii v strategii osvoeniya rudnykh mestorozhdeniy kombinirovannym sposobom (Optimization of underground technology in the strategy of ore deposit mastering by combined method). Gornyi Zhurnal = Mining Journal. 2011. No. 11. pp. 41–44. 3. Sokolov I. V., Antipin Yu. G. Sistematizatsiya i ekonomiko-matematicheskoe modelirovanie variantov vskrytiya podzemnykh zapasov pri kombinirovannoy razrabotke mestorozhdeniy (Systematization and economic-mathematical modeling of the methods of underground reserve opening during the combined mining). Gornyi Zhurnal = Mining Journal. 2012. No. 1. pp. 67–71. 4. Liang Q.-Z. Recovery of slope-coupling ore body in the case open pit mine changes into underground mine. Mining Engineering. 2010. No. 8 (6). pp. 21–22. 5. Lu H., Gao Y. Stability analysis and reinforcement scheme optimization of large open ending slope. Journal of Central South University (Science and Technology). 2015. Vol. 46. pp. 1786-1798. 6. Kaplunov D. R., Leyzerovich S. G., Tomaev V. K., Sidorchuk V. V. O dalneyshem razvitii gornykh rabot v basseyne Kurskoy Magnitnoy Anomalii (About the further development of mining in the Kursk Magnetic Anomaly basin). Gornyi Zhurnal = Mining Journal. 2011. No. 10. pp. 44–49. 7. Kuranov A. D., Sidorov D. V. Otsenka napryazhennogo sostoyaniya mezhdushtrekovykh tselikov na rudnikakh Otkrytogo Aktsionernogo Obshchestva «Apatit» (Assessment of the stressed state of inter-drift pillars at JSC «Apatit» mines). Izvestiya Tulskogo gosudarstvennogo universiteta. Nauki o Zemle = Proceedings of the Tula State University. Sciences of Earth. 2011. No. 1. pp. 308–312. 8. Kuranov A.D. Primenenie chislennogo modelirovaniya dlya vybora bezopasnykh parametrov sistem razrabotki rudnykh mestorozhdeniy v vysokonapryazhennykh massivakh (Application of numerical modeling for the choice of safe parameters of the systems of ore mining in high-stressed massifs). Zapiski Gornogo instituta = Proceedings of the Mining Institute. 2013. Vol. 206. pp. 60–64. 9. Wang N., Wan B. H., Zhang P., Du X. L. Analysis on deformation development of open-pit slope under the influence of underground mining. Proceedings of International Symposium on Land Reclamation and Ecological Restoration. Beijing, China, 2015. pp. 53–58. 10. Wang D. S., Chang J. P., Yin Z. M., Lu Y. G. Deformation and failure characteristics of high and steep slope and the impact of underground mining. Transit Development in Rock Mechanics-Recognition, Thinking and Innovation : Proceedings of the 3rd ISRM Young Scholars Symposium on Rock Mechanics. USA, 2014. pp. 451–457. 11. Protosenya A. G., Shokov A. N. Prognoz napryazhenno-deformirovannogo sostoyaniya podkarernogo massiva pri otkryto-podzemnoy razrabotke Koashvinskogo mestorozhdeniya (Forecast of stress-strain state of the pit massif during the open-cast and underground mining of the Koashvin deposit). Zapiski Gornogo instituta = Proceedings of the Mining Institute. 2013. Vol. 204. pp. 210–214. 12. Protosenya A. G., Kuranov A. D. Metodika prognozirovaniya napryazhenno-deformirovannogo sostoyaniya gornogo massiva pri kombinirovannoy razrabotke Koashvinskogo mestorozhdeniya (Procedure of rock mass stress–strain state forecasting in hybrid mining of the Koashvin deposit). Gornyi Zhurnal = Mining Journal. 2015. No. 1. pp. 67–71. 13. Metodicheskie ukazaniya po ustanovleniyu razmerov kamer i tselikov pri kamernykh sistemakh razrabotki rud tsvetnykh metallov (Instructional guidelines for the definition of chamber and pillar sizes during the chamber mining of non-ferrous metal ores). Leningrad : Research Institute of Mining Geomechanics and Mine Surveying, 1972. 85 p. (in Russian) 14. Trushko V.L., Protosenya A.G., Matveev P.F., Sovmen Kh. M. Geomekhanika massivov i dinamika vyrabotok glubokikh rudnikov (Massif geomechanics and dynamics of deep mine workings). Saint Petetrsburg : Saint Petersburg State Mining Institute, 2000. 396 p. |