ArticleName |
Heat recovery of anode gases of aluminium elecrtolyzer |
ArticleAuthorData |
Siberian Federal University, Krasnoyarsk, Russia:
S. G. Shakhray, Assistant Professor (Chair of Technosphere Safety of Mining and Metallurgical Production), e-mail: shahrai56@mail.ru A. P. Skuratov, Professor
Irkutsk State Technical University, Irkutsk, Russia: V. V. Kondratev, Assistant Professor V. A. Ershov, Assistant Professor |
Abstract |
This paper presents a brief overview of cooling methods for anode gases, used at modern aluminum smelters to reduce gas amount, energy consumption for transport, size of flue networks, and fluorine desorption from hot alumina trapped by pollution control scrubbers. Modern methods of anode gases heat use for household and industrial needs (water heating, distillation or power generation with Rankin machines) are also briefly discussed. There is carried out the analysis of energy consumption for the heating of alumina, loadable into the bath, to the melt temperature and heat loss with anode gases, removed from the Soderberg cell. Together with high enthalpy anode gases, carried into the duct system, the losses of energy amount are by 3 to 4 times higher than alumina heating energy costs. The advantage of preheated alumina loading is shown using the heat transfer equations in bath and alumina areas. A technical solution, allowing the use of anode gases heat for alumina heating up to 200–250 oC before its loading into the bath is developed and presented. Loading of preheated alumina into the melt reduces the cell’s specific energy consumption by 80–95 kWh/t of Al; and energy consumption for refrigerated anode gases transportation are reduced by 15–20 kWh/t of Al. Material consumption of Soderberg workshop flue gas network will also be reduced. Alumina heating by the presented technical solution provides for almost 2-fold reduction of alumina feeding bins number, reduces the load on anode frame jacks and its drives power consumption, and improves the conditions of Soderberg formation. This paper was written using the results of the works, carried out during the project 02.G25.31.0181 “Design of the super-power and energy efficient technology of obtaining of aluminium RA-550 (РА-550)” within the Program of realization of complex projects for the creation of high-technological production, approved by the regulation of the Government of Russian Federation No. 218 on April 09, 2010. |
References |
1. Yanko E. A. Proizvodstvo alyuminiya. Posobie dlya masterov i rabochikh tsekhov elektroliza alyuminievykh zavodov (Aluminium production. Tutorial for masters and workers of electrolysis shops of aluminium plants). Saint Petersburg : Publishing House of Saint Petersburg University, 2007. 305 p. 2. Shakhray S. G., Korostovenko V. V., Baranov A. N. et al. Analiz vliyaniya povysheniya sily i plotnosti anodnogo toka na pokazateli raboty elektrolizera Soderberga (Analysis of the influence of increasing of power and durability of anode current on Soderberg electrolyser operation indicators). Tretiy mezhdunarodnyy kongress “Tsvetnye metally – 2011” : sbornik nauchnykh dokladov (Third international congress “Non-ferrous metals – 2011” : collection of scientific reports). Krasnoyarsk, 2011. pp. 185–192. 3. Ose S., Sørhuus A. K., Wedde G. Abart CDS — A New Compact Multi-Pollutant Pot Gas and Alumina Handling System. Light Metals. 2014. pp. 617–622. 4. Bonnier M., Massambi S., Jolas J.-M., Girault G., Demetriou V., Wheaton D. Development of a System Basedon Water Atomization to Decrease, Prior to Treatment, the Temperature of the Gas Emitted from Aluminum Cells. Light Metals. The Minerals, Metals & Materials Society. 2007. pp. 193–197. 5. Bouhabila E. H., Næss E., Kielland Einejord V., Kristjansson K. An innovative compact heat exchanger solution for aluminum off-gas cooling and heat recovery. Light Metals. 2013. pp. 793–797. 6. Kondratev V. V., Shaydullin E. R., Zavadyak A. V. et al. Razrabotka tekhnologii intensifikatsii protsessov gazoudaleniya i gazoochistki alyuminievogo proizvodstva (Development of intensification technology of gas removal and gas purification processes of aluminium production). Chetvertyy mezhdunarodnyy kongress “Tsvetnye metally-2012” : materialy kongressa (Forth international congress “Non-ferrous metals – 2012” : materials of congress). Krasnoyarsk, 2012. pp. 416–419. 7. Bouhabila E. H., Cloutier B., Malard T., Martineau P., Hugues V. Electrolytic cell gas cooling upstream of treatment center. Light Metals. 2012. pp. 545–550. 8. Verbraak P., Turco T., Klut P., Dupon E., Engel E. Pot gas cooling technologies. Light Metals. 2014. pp. 635–639. 9. Sørhuus A. K., Ose S., Nilsen B. M. Possible use of 25 mw thermal energy recovered from the potgas at alba line. Light Мetalls. 2015. pp. 631–636. 10. de Gromard A., Lim C., Bouhabila E. H., Cloutie B., Frainais M. Development on electrolytic cell gas cooling. Light Metals. 2014. pp. 623–628. 11. Galevskiy G. V., Kulagin N. M., Mintsis M. Ya., Sirazutdinov G. A. Metallurgiya alyuminiya. Tekhnologiya, elektrosnabzhenie, avtomatizatsiya (Aluminium metallurgy. Technology, power supply, automation). Third edition, revised and enlarged. Moscow : Flinta; Nauka, 2008. 528 p. 12. Isaeva L. A., Polyakov P. V. Glinozem v proizvodstve alyuminiya elektrolizom (Alumina in aluminium production by electrolysis). Krasnoturinsk : Publishing House of JSC “BAZ”, 2000. 199 p. 13. Mikhalev Yu. G., Braslavskiy A. B., Isaeva L. A. Vliyanie kriolitovogo otnosheniya, peregreva elektrolita i dobavok ftorida kaliya na skorost rastvoreniya glinozema (Influence of cryolite ratio, overheating of electrolyte and potassium fluoride additions on alumina dissolution rate). XI Mezhdunarodnaya konferentsiya “Alyuminiy Sibiri – 2005” : materialy konferentsii (The XI International conference “Siberian Aluminium – 2005” : materials of Conference). Krasnoyarsk, 2005. pp. 6–8. 14. Belolipetskiy V. M., Piskazhova T. V. Matematicheskoe modelirovanie protsessa elektroliticheskogo polucheniya alyuminiya. Reshenie zadach upravleniya tekhnologiey : monografiya (Mathematical modelling of the process of electrolytic obtaining of aluminium. Solving of technology control problems : monograph). Krasnoyarsk : Siberian Federal University, 2013. 272 p. 15. Borisoglebskiy Yu. V. Raschet i proektirovanie alyuminievykh elektrolizerov : uchebnoe posobie (Calculation and design of aluminium electrolyzers tutorial). Leningrad : Publishing House of Leningrad Polytechnical University named after M. I. Kalinin, 1981. 80 p. 16. Krivoruchenko V. V., Korobov M. A. Teplovye i energeticheskie balansy elektrolizerov (Thermal and energetic balances of electrolyzers). Moscow : State Scientific-Technical Publishing House of Ferrous and Non-Ferrous Metallurgy Literature, 1963. 320 p. 17. Available at: https://www.consultant.ru/document/cons_doc_LAW_93978/ (in Russian) 18. Shakhray S. G., Polyakov P. V., Kondratev V. V., Belyanin A. V., Shaydulin E. R., Piskazhova T. V. Sposob i ustroystvo dlya utilizatsii tepla anodnykh gazov alyuminievogo elektrolizera (Method and equipment for utilization of anode gas heat of aluminium electrolyzer). Patent RF, No. 2558813. Published: August 10, 2015. Bulletin No. 22. 19. Shakhray S. G., Korostovenko V. V. Gazosbornyy kolokol alyuminievogo elektrolizera s samoobzhigayushchimsya anodom (Gas-collecting bell of aluminium electrolyzer with self-baking anode). Patent RF, No. 95669. Published: July 10, 2010. Bulletin No. 19. |