Journals →  Chernye Metally →  2016 →  #5 →  Back

Metallurgy and automotive industry
ArticleName The prospects of decrease of car body weight by usage of Cr–Mn steels
ArticleAuthor S. Lindner
ArticleAuthorData

Outokumpu Nirosta GmbH (Krefeld, Germany):

Lindner S., Dr. Eng., Mag. Sc., Head of Automobile Designing Dept., e-mail: stefan.lindner2@outokumpu.com

Abstract

The properties of new material (Mn–Cr steels) are presented. Such steels were developed for different yield strength values (500, 800 and 1000 MPa) and they can be classified as ultra high strength steels. At the same time they are characterized by high value of relative elongation it allows to manufacture automotive details and components with more complicated geometrical shape and to absorb large energy volume during impact. These steels are commercially available at present time as sheets with thickness 0.5–4.0 mm and width 1250 mm, and the work in direction of spreading this dimension range is continuing actively. All steels of the developed series are now subjected to the procedure of acceptance for usage by different automotive producers and the process of preparing the material specification. Owing to their well-balanced mechanical and technological properties, structure and strengthening mechanisms, the TWIP Mn–Cr steels are able to provide innovative lightweight constructions for shock-proof and safe transportation vehicles. The steels are also characterized by increased capacity for power absorption during shock load and by welding ability. They also allow to realize the prospective ecological and social requirements for lightweight materials.

keywords Chromium steels, manganese, lightweight constructions, carbon dioxide, austenite steels, ultra-high strength steels, safety, recycling, welding seam, shock, strength
References

1. Die EU-Verordnung zur Verminderung der CO2-Emissionen von Personenkraft-wagen, Veröffentlichung des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit, 2009.
2. Rudolph, H.J.: Audi Q3 — Entwicklung und Technik, ATZ/MTZTypenbuch, Springer Vieweg, 2013.
3. Ratte, E.: Wasserstoffinduzierte verzögerte Rissbildung austenitischer Stähle auf CrNi(Mn)- und Mn-Basis, Dissertation, IEHK RWTH Aachen, Shaker Verlag, Band 8/007, 2007.
4. Bracke, L.: de Cooman, B.; Liebeherr, M.; Akdur, N.: Phase transformations in High Strength Austenitic FeMnCr Steels, Solid-solid phase transformations in inorganic materials, Vol. 1, 2005, S. 905/10.
5. Meschut, G.: Zukünftige Fügekonzepte für Automobilstrukturen in Mischbauweise, Dresdner Leichtbausymposium, Dresden, 26. Juni 2003.
6. Lindner, S.: Joining processing advices of new Manganese-chromium steels with high strength and without nickel for automotivetypical joining combinations, 4th Intern. Conf. on Steels in Cars and Trucks, Braunschweig, 15. Juni 2014.
7. Lindner, S.: Verarbeitungshinweise beim Fügen neuer Mangan-Chrom-Stähle für automobiltypische Fügekombinationen, DVS Congress, Große schweiß-technische Tagung, Berlin, 15. September 2014.
8. Hahn, O.; Gieske, D.; Rhode, A.: Probe und Probenspannvorrichtung zum Einsatz in Zugmaschinen; Patentschrift DE 195 22 247 A1, 1997.
9. N. N.: European Vehicle Market Statistics Pocketbook, S.3 3, Intern. Council on Clean Transportation, 2014.
10. Schnitzer, A.; The new Mercedes-Benz A-class, Aachener Karosserietage, Aachen, 25. September 2012.

Language of full-text russian
Full content Buy
Back