Журналы →  Tsvetnye Metally →  2016 →  №5 →  Назад

LIGHT METALS, CARBON MATERIALS
Название Development of the method of electrolyzers' energy mode control for aluminium production
DOI 10.17580/tsm.2016.05.06
Автор Sysoev I. A., Kondratev V. V., Shakhray S. G., Karlina A. I.
Информация об авторе

National Research Irkutsk State Technical University, Irkutsk, Russia:

I. A. Sysoev, Leading Researcher of the Innovation Technologies Department of Physical and Technical Institute
V. V. Kondratev, Head of the Innovation Technologies Department of Physical and Technical Institute

A. I. Karlina, Deputy Head of Scientific Depatrment

 

Siberian Federal University, Krasnoyarsk, Russia:
S. G. Shakhray, Assistant Professor of a Chair of Technosphere Safety of Mining and Metallurgical Production, e-mail: shahrai56@mail.ru

Реферат

This article briefly analyzes the possible approaches to control the energy mode of electrolyzers and the electrolyte composition. There was made a review of literature, describing the control of energy mode of different types of electrolyzers. The advantages and disadvantages of the different ways used in the world practice were defined. A correct temperature of electrolyte and overheat size are the major factors, defining the achievement of high technical and economic indexes of electrolytic aluminium obtaining. The methods of development of low-cost and effective method of electrolyzer energy mode control were defined on the basis of the studied materials. Experiments were carried out on development of the formula for the calculation of liquidus electrolyte temperature. There were studied the effects of various factors on the electrolyte thermal response during aluminum production. This work objective is to determine optimal parameters and create an algorithm to control the electrolyzers' energy mode by monitoring and automated maintaining of the operation voltage and the electrolyte temperature structure within the specified limits. On the basis of the created control algorithm, the computer program was worked out and its industrial tests were conducted on an operating production. The study results can be used in developing and implementing the technology of electrolyzer automated control for aluminum production.

Ключевые слова Electrolyzer, aluminum, electrolyte, temperature, voltage, current, electric power, energy mode control
Библиографический список

1. Shakhray S. G., Belyanin A. V., Kondratev V. V. Povyshenie energeticheskoy effektivnosti elektroliticheskogo proizvodstva alyuminiya (Increasing the energy efficiency of electrolytic production of aluminium). Sbornik dokladov VI mezhdunarodnogo kongressa “Tsvetnye metally–2014” (Collection of reports of the VI international congress “Non-ferrous metals-2014”). Krasnoyarsk, 15–18 September 2014. pp. 361–372.
2. Available at: https://www.consultant.ru/document/cons_doc_LAW_93978/ (in Russian)
3. Tarcy G. P., Torklep K. Current Efficient in Prebake and Soderberg. Light Metals. 2005. Vol. 2. pp. 319–334.
4. Solheim A., Rolseth S., Skybakmoen E., Stoen L., Sterten E., Store T. Liquidus temperature and alumina solubility in the system Na3AlF6 – AlF3 – LiF – CaF2 – MgF2. Light Metals. 1995. Vol. 2. pp. 451–460.
5. Mikhalev Yu. G., Braslavskiy A. B., Isaeva L. A. Vliyanie kriolitovogo otnosheniya, peregreva elektrolita i dobavok ftorida kaliya na skorost rastvoreniya glinozema (Influence of bath ratio, electrolyte overheat and potassium fluoride additives on alumina dissolution rate). Sbornik dokladov XI mezhdunarodnoy konferentsii “Alyuminiy Sibiri” (Collection of reports of the XI international conference “Siberian Aluminium”). Krasnoyarsk, 2005. pp. 6–8.
6. Grotheim K., Kvande H. Introduction to Aluminium Electrolysis — Understanding the Hall-Heroult Process. Aluminium-Verlag. Dusseldorf. 1993. 232 р.
7. Paulino L., Yamamoto J., Camilli R. A., Araujo J. C. Bath ratio control improvements at Alcoa posos de caldas — Brazil. Light Metals. 2005. pp. 419–426.
8. Meghlaoui A., Aljabri N. Aluminum Fluoride control Strategy Improvement. Light Metals. 2003. Vol. 1. pp. 425–435.
9. Bonnardel O., Homsi P. The Pechiney Semi-Continuous & Automatic Measurement Device (CMD), A New Tool for Automatic Measurements. Light Metals. 1999. pp. 303–309.
10. Rieck T., Iffert M., White P., Rodrigo R., Kelchtermans R. Increased Current Efficiency and Energy Consumption at the TRITMENT Smelter Essen using 9 Box Matrix Control. Light Metals. 2003. Vol. 2. pp. 449–456.
11. Turusov S. N., Nozhko S. I., Sedykh V. I. Sravnitelnaya otsenka datchikov izmereniya stepeni peregreva elektrolita v alyuminievom elektrolizere (Comparative assessment of the sensors of electrolyte overheat degree measurement in aluminium electrolyzer). Tsvetnaya metallurgiya = Non-ferrous metallurgy. 2005. No. 54. pp. 35–38.
12. Bath Temperature & Chemistry Measurement. Heraeus Electro-Nite. Available at: http://heraeus-electro-nite.com/en/sensorsformoltenmetals/aluminium/liquidusandsuperheatcontrol/liquidusandsuperheatcontrol_1.aspx (accessed: April 14, 2016).
13. Wang X., Hosier В., Tarcy G. Alcoa STARprobe™. Light Metals. 2011. Vol. 2. pp. 483–489.
14. Wang X., Tarcy G., Batista E., Wood G. Active pot control using Alcoa STARprobe™. Light Metals. 2011. Vol. 2. pp. 491–496.
15. Berezin A. I., Piskazhova T. V., Gritsko V. V. et al. Upravlenie tekhnologiey elektroliza po peregrevu elektrolita (Electrolysis technology control by electrolyte overheat). Sbornik dokladov XII mezhdunarodnoy konferentsii “Alyuminiy Sibiri” (Collection of reports of the XII international conference “Siberian Aluminium”). Krasnoyarsk, 2006. pp. 27–35.
16. McFadden F. J. S. Control of temperature in aluminium reduction cellschallenges in measurement and variablity. Light Metals. 2001. Vol. 2. pp. 1171–1180.
17. Ershov V. A., Sysoev I. A. Sposob opredeleniya kontsentratsii glinozema v kriolit-glinozemnom rasplave (Method of definition of alumina concentration in cryolite-alumina melt). Patern RF, No. 2467095. Published : November 20, 2012. Bulletin No. 32.
18. Sysoev I. A., Ershov V. A., Bogdanov Yu. V. et al. Issledovanie vliyaniya tekhnologicheskikh faktorov na temperaturnye kharakteristiki elektrolitov pri proizvodstve alyuminiya (Investigation of the influence of technological factors on electrolyte temperature characteristics during aluminium production). Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta = Bulletin of Irkutsk State Technical University. 2010. No. 2. pp. 193–198.
19. Ershov V. A., Sysoev I. A., Kondratiev V. V., Bogdanov Yu. V., Kamagan tsev V. G. Controlling the concentration of alumina in the electrolyte during the production of aluminum. Metallurgist. 2012. Vol. 55, No. 11/12. pp. 859–864.
20. Sysoev I. A., Ershov V. A., Kondratev V. V. Method of controlling the energy balance of electrolytic cells for aluminum production. Metallurgist. 2015. Vol. 59, No. 3.
21. Sysoev I. A., Ershov V. A. Programma upravleniya energeticheskim rezhimom elektrolizerov pri proizvodstve alyuminiya “Peregrev”: svidetelstvo ob ofitsialnoy registratsii programmy dlya elektronno-vychislitelnoy mashiny (Program of electrolyzers' energy mode control during aluminium production “Overheat”: official computer program registration certificate). State Registration Certificate RF No. 2014615075. Applied : March 19, 2014. Registered : May 16, 2014.

Language of full-text русский
Полный текст статьи Получить
Назад