ArticleName |
Non-equilibrium phases formation in Al – Mg – Si – Cu system alloys, aging according to the Q-type (Al5Cu2Mg8Si6)
|
Abstract |
This paper investigates the phase transformations during aging in 6013 and 1370 alloys (Al – Mg – Si – Cu system), containing 0.8–1.0% (wt.) of Cu. Transmission electron microscopy verified the crystal structure of non-equilibrium phases, aging according to the Q-type (Al5Cu2Mg8Si6). Lattices of these phases have different parameters and orientation relations with matrix. The Q-phase structure was defined on the particles formed as a result of overaging (230 оC, 32 h). Morphology and habitus of the β’- and Q’-phase particles were defined. Morphology of β’-phase (Mg2Si) particles is rod-shaped, while morphology of non-equilibrium Q’-phase particles is lath- and rod-shaped. The laths have two types of habitus: {510}Al and {320}Al. Diagrams of phase transformations during aging were constructed according to the research results, marking the time temperature areas of Q-type phases existence. Formation of Q-type phase corresponds to higher temperatures and duration, than formation of β’’ and β’-phase. Decomposition mechanism of the supersaturated solid solution (SSS) in this system alloys is offered. Formation of Mg2Si cluster requires shorter diffusion displacements than formation of composition fluctuations, containing Al, Mg, Si and Cu in right proportions. Therefore, Cu atoms are released from SSS in the last turn. There was analyzed the correlation between the SSS decomposition products near the grain boundary region during the step aging and resistance to intercrystalline corrosion (ICC) in 1370 alloy. There were developed the step modes of aging, which provide high strength properties and good resistance to ICC (ICC depth is less than 100 microns). This work was carried out with the financial support of the Ministry of Education and Science of the Russian Federation within the agreement about the subsidy No. 14.595.21.0002 (22.08.2014), unique identifier No. RFMEFI59514X0002, using the equipment of the “Climatic Testings” Center (All-Russian Scientific Research Institute of Aviation Materials). |
References |
1. Kablov E. N. Innovatsionnye razrabotki federalnogo gosudarstvennogo unitarnogo predpriyatiya “VIAM” gosudarstvennogo nauchnogo tsentra Rossiyskoy Federatsii po realizatsii “Strategicheskikh napravleniy razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda” (Innovation developments of the All-Russian Scientific Research Institute of Aviation Materials for realization of the Strategic ways of development of materials and their processing technologies for the period till 2030). Aviatsionnye materialy i tekhnologii = Aviation materials and technologies. 2015. No. 1. pp. 3–33. 2. Maskhidov V. V., Kolobnev N. I., Karimova S. A., Sbitneva S. V. Vzaimosvyaz struktury i korrozionnoy stoykosti v splave 1370 sistemy Al – Mg – Si – Cu – Zn (Interconnection of structure and corrosion resistance in the alloy 1370 (Al – Mg – Si – Cu – Zn system)). Aviatsionnye materialy i tekhnologii = Aviation materials and technologies. 2012. No. 1. pp. 8–13. 3. Mondolfo L. F. Struktura i svoystva alyuminievykh splavov (Structure and properties of aluminium alloys). Moscow : Metallurgiya, 1979. 639 p. 4. Kolobnev N. I., Maskhidov V. V., Samokhvalov S. V., Sbitneva S. V., Popov V. I., Kurs M. G. Vliyanie deformatsii posle zakalki i rezhimov stareniya na mekhanicheskie i korrozionnye svoystva splava sistemy Al – Mg – Si – Cu – Zn (Influence of after-calcination deformation and aging modes on mechanical and corrosion properties of Al – Mg – Si – Cu – Zn system alloy). Aviatsionnye materialy i tekhnologii = Aviation materials and technologies. 2011. No. 1. pp. 12–15. 5. Tao C. H., Liu C. H., Chen J. H., Lai Y. X., Ma P. P. The influence of Mg/Si ratio on the negative natural aging effect in Al – Mg – Si – Cu alloys. Materials Science and Engineering. 2015. Vol. 642. pp. 241–248. 6. Ehlers F. J. H., Wenner S., Andersen S. J., Marioara C. D., Lefebvre W. Phase stabilization principle and precipitate-host lattice influences for Al – Mg – Si – Cu alloy precipitates. Journal of Materials Science. 2014. pp. 6413–6426. 7. Mohamed A. M. A., Samuel F. H. A review on the heat treatment of Al – Si – Cu/Mg casting alloy. Journal of Materials Science. 2014. pp. 543–561. 8. Holmestad R., Marioara C. D., Ehlers F. J. H. et al. Precipitation in 6XXX Aluminum Alloys. Proceedings of the 12th International Conference on Aluminium Alloys. Yokohama, 2010. pp. 30–39. 9. Chakrabarti D. J. Automotive Alloys II. Edited by S. K. Das. 2002. Vol. 369–402. pp. 947–952. 10. Cayron C., Buffat P. A. Structural phase transition in Al – Mg – Si – Cu and Al – Mg – Si alloys: ordering mechanisms and crystallographic structures. Materials Science Forum. 2000. Vol. 331–337. pp. 1001–1006. 11. Chuistov K. V. Starenie metallicheskikh splavov (Aging of metallic alloys). Kiev : Akademperiodika, 2003. 567 p. 12. Khokhlatova L. B., Kolobnev N. I., Antipov V. V., Karimova S. A., Rudakov A. G., Oglodkov M. S. Vliyanie korrozionnoy sredy na sklonnost rosta treshchiny ustalosti v alyuminievykh splavakh (Influence of corrosion medium on the disposition of fatigue fissure growth in aluminium alloys). Aviatsionnye materialy i tekhnologii = Aviation materials and technologies. 2011. No. 1. pp. 16–20. 13. Kablov E. N., Startsev O. V., Medvedev I. M., Panin S. V. Korrozionnaya agressivnost primorskoy atmosfery. Chast 1. Faktory vliyaniya (obzor) (Corrosiveness of coastal atmosphere. Part 1. Influence factors (review)). Korroziya: materialy, zashchita = Protection of Metals. 2013. No. 12. pp. 6–18. 14. Zhilikov V. P., Karimova S. A., Leshko S. S., Chesnokov D. V. Issledovanie dinamiki korrozii alyuminievykh splavov pri ispytanii v kamere solevogo tumana (KST) (Investigation of aluminium alloy corrosion dynamics during testing in salt-spray chamber). Aviatsionnye materialy i tekhnologii = Aviation materials and technologies. 2012. No. 4. pp. 18–22. 15. Kablov E. N., Startsev O. V., Medvedev I. M. Obzor zarubezhnogo opyta issledovaniy korrozii i sredstv zashchity ot korrozii (Review of the foreign experience of investigations of corrosion and corrosion-protection means). Aviatsionnye materialy i tekhnologii = Aviation materials and technologies. 2015. No. 2. pp. 76–87. 16. Hirsch P. B., Howie A., Nicholson R. B., Pashley D. W., Whelan V. J. Elektronnaya mikroskopiya tonkikh kristallov (Electron Microscopy of Thin Crystals). Moscow : Mir, 1968. 568 p. 17. Alekseev A. A., Bikova S. V., Ermolova M. I., Kolobnev N. I. Diffusive paths in 6013 (AD37) alloy under a single and double ageing. Proceedongs of Conference ICAA8. Cambridge, 2002. pp. 1238–1243. 18. Davydov V. G., Ber L. B., Ananev V. I., Kaputkin E. Ya. Diagramma fazovykh prevrashcheniy i temperaturno-vremennye karty svoystv splava AD37 v intervale temperatur stareniya (Phase transformation diagram and temperature-time cards of properties of the alloy AD37 in the aging temperature range). Tekhnologiya legkikh splavov = Technology of Light Alloys. 1999. No. 1/2. p. 73. 19. Ber L. B., Sinyavskiy V. S., Zakharov V. V., Kaputkin E. Ya., Kalinin V. D., Rostova T. D., Ukolova O. G., Titova E. V. Vliyanie rezhimov zakalki i stareniya na fazovyy sostav, mekhanicheskie svoystva i soprotivlenie mezhkristallitnoy korrozii listov iz splava 1370 (Influence of calcination and aging modes on phase composition, mechanical properties and resistance of intercrystalline corrosion of alloy 1370 sheets). Tekhnologiya legkikh splavov = Technology of Light Alloys. 2008. No. 4. pp. 15–23. 20. GOST 9.021–74. Edinaya sistema zashchity ot korrozii i stareniya. Alyuminiy i splavy alyuminievye. Metody uskorennykh ispytaniy na mezhkristallitnuyu korroziyu (State Standard 9.021–74. Unified system of corrosion and ageing protection. Aluminium and aluminium alloys. Accelerated test methods for intercrystalline corrosion). Introduced: January 01, 1975. (in Russian). |