Journals →  Tsvetnye Metally →  2016 →  #8 →  Back

HEAVY NON-FERROUS METALS
ArticleName Thermodynamics of the Cu – Me – Fe – S – O system: features of Cu, Pb, Zn, Fe, As and Sb behaviour in joint processing of lead semiproducts, recycled materials and copper-zinc concentrate
DOI 10.17580/tsm.2016.08.06
ArticleAuthor Dosmukhamedov N. K., Zholdasbay E. E., Fedorov A. N.
ArticleAuthorData

Chair of Metallurgy of Non-Ferrous Metals, Kazakh National Research Technical University after K. I. Satpayev, Almaty, Republic of Kazakhstan:

N. K. Dosmukhamedov, Professor, e-mail: nurdos@bk.ru
E. E. Zholdasbay, Engineer


Chair of Non-Ferrous Metals and Gold, National University of Science and Technology “MISiS”, Moscow, Russia:
A. N. Fedorov, Professor

Abstract

The actual processing technology for semiproducts and recycled materials is based on usage of blast contractile smelting and is characterized by low copper, lead and zinc extraction in the finished products. Essential concentration of arsenic and antimony in these products stipulates their low quality. To improve this technology, it is proposed to change the type and composition of initial charge material via replacing of copper-zinc ore by high-sulphuric copper-zinc concentrate. Principal possibility of direct concentrate processing with its simultaneous usage as a sulphidizer for depletion of non-ferrous metal slags is shown. Thermodynamical analysis of the main interaction reactions for slag components and copper-zinc concentrate is conducted. The values of Gibbs free energy and constants of reactions in the temperature range 1073–1573 K have been established based on thermodynamical calculations of the reactions describing the main physical and chemical processes during blast contractile smelting. The mechanism of interaction between oxides of non-ferrous metals and iron (from one side) and concentrate components (from other side) has been revealed. It is displayed that sulphidizing of arsenic and antimony oxide is achieved in the case of their interaction with elementary sulphur and iron sulphide. High possibility of conducting of these reactions provides deep arsenic and antimony distillation in dust, in the form of non-toxic sulphides. Usage of the proposed technical solution will decrease substantially the effect on the environment, improve technological operating parameters owing to lowering of loss of non-ferrous metals with slag and matte, as well as improve quality of finished products.

keywords Semiproducts, recycled materials, copper-zinc concentrate, nonferrous metals, impurities, sulphidizing, extraction, Gibbs free energy
References

1. Takezhanov S. T., Erofeev I. E. Kontseptsiya “Kompleks” tekhnikotekhnologicheskogo razvitiya tsvetnoy metallurgii Kazakhstana (A concept “Complex” of technical and technological development of non-ferrous metallurgy of Kazakhstan). Almaty : Kitap, 2001. 136 p.
2. Chudaev I., Vereshchagin Yu. Metallurgiya medi — s drevneyshikh vremen do nashikh dney (Chast 2) (Copper metallurgy — from early times to our days (Part 2)). Sbornik trudov I Mezhdunarodnoy konferentsii “Uralskiy rynok loma” (Collection of proceedings of the I International conference “Ural market of scrap”). Ekaterinburg, 2008. pp. 60–64.
3. Vaskevich A. D. Avtogennye protsessy v pirometallurgii tsvetnykh metallov (Autogenous processes in non-ferrous metals pyrometallurgy). Itogi nauki i tekhniki. Seriya “Metallurgiya tsvetnykh metallov” (Results of science and technology. Series “Metallurgy of non-ferrous metals”). Moscow : Russian Institute for Scientific and Technical Information (VINITI RAS), 1988. Vol. 18. pp. 3–67.
4. Mechev V. V., Bystrov V. P., Tarasov A. V. Avtogennye protsessy v tsvetnoy metallurgii (Autogenous processes in non-ferrous metallurgy). Moscow : Metallurgiya, 1991. 413 p.
5. Altushkin I. A., Korol Yu. A., Bakin A. V., Krasilnikov Yu. V. Innovatsii v metallurgii medi na primere realizatsii proekta rekonstruktsii zakrytogo aktsionernogo obshchestva “Karabashmed”. Chast 2. Opyt osvoeniya pechi Ausmelt (Innovations in copper metallurgy by the example of a realization of a reconstruction project of “Karabashmed” JSC. Part 2. Experience of “Ausmelt” furnace development). Tsvetnye Metally = Non-ferrous metals. 2012. No. 8. pp. 35–45.
6. Chen L., Bin W., Yang T., Liu W., Bin Sh. Research and industrial application of oxygen-rich side-blow bath smelting technology. 4th International Symposium on High Temperature Metallurgical Processing. Lebanon, New Hampshire : John Wiley and Sons, 2013. pp. 49–55.

7. Bulakh A. G. Metody termodinamiki i mineralogii (Methods of thermodynamics and mineralogy). Leningrad : Nedra, 1974. 182 p.
8. Kubashevskiy O., Olkokk K. B. Metallurgicheskaya termokhimiya (Metallurgical thermochemistry). Moscow : Metallurgiya, 1982. 392 p.
9. Rabinovich V. A., Khavin E. Ya. Kratkiy khimicheskiy spravochnik (Brief chemical review). Leningrad : Khimiya, 1991. 432 p.
10. Dosmuhamedov N. K. The mine contractile melting material balance: The silicon dioxide content analysis in slag. International Journal of Experimental Education. 2013. No. 12. pp. 52–56.
11. Dosmukhamedov N. K., Zholdasbay E. E., Fedorov A. N., Shautenov M. R. Technology of separate processing copper-, plumbiferous polymetallic feedstock. Non-ferrous Metals. 2015. No. 2. pp. 11–16. DOI: 10.17580/nfm.2015.02.02
12. Bulatov K. V., Skopov G. V., Skopin D. Yu., Yakornov S. A. Pererabotka polimetallicheskikh kontsentratov v plavilnom agregate “Pobeda” obshchestva s ogranichennoy otvetstvennostyu “Mednogorskiy medno-sernyy kombinat” (Processing of polymetallic concentrates in melting facility “Pobeda” (LLC “Mednogorsk copper-sulfur combine”)). Tsvetnye Metally = Non-ferrous metals. 2014. No. 10. pp. 39–44.
13. Kotykhov M. I., Fedorov A. N., Lukavyy S. L., Khabiev R. P. Izuchenie raspredeleniya medi mezhdu shlakom i svintsom v barbotazhnom vosstanovitelnom protsesse (Investigation of copper distribution between lead and slag in reducing bubble process). Tsvetnye Metally = Non-ferrous metals. 2014. No. 2. pp. 40–44.
14. Kotykhov M. I., Fedorov A. N. Investigation of copper distribution between slag and lead in bubbling reduction process. Non-ferrous Metals. 2014. No. 2. pp. 21–24.
15. Shmonin Yu. B. Pirometallurgicheskoe obednenie shlakov tsvetnoy metallurgii (Pyrometallurgical depletion of non-ferous metallurgy slags). Moscow : Metallurgiya, 1981. 132 p.
16. Junwei Han, Wei Liu, Dawei Wang, Fen Jiao, Wenqing Qin. Selective sulfidation of lead smelter slag with sulfur. Metallurgical and Materials Transactions B. 2015. Vol. 47, No. 1. pp. 344–354.
17. Kotykhov M. I., Fedorov A. M. Copper distribution in condensation products of lead concentrate melting using Vanyukov’s process. Non-ferrous Metals. 2015. No. 1. pp. 9–12. DOI: 10.17580/nfm.2015.01.02
18. Vanyukov A. V., Zaytsev V. Ya. Shlaki i shteyny tsvetnoy metallurgii (Slags and mattes of non-ferrous metallurgy). Moscow : Metallurgiya, 1969. 389 p.
19. Henao H. M., Kongoli F., Itagaki K. High temperature phase relations in FeOX (X = 1 and 1.33) – CaO – SiO2 systems under various oxygen partial pressure. Materials Transactions. 2005. Vol. 46, No. 4. pp. 812–819.
20. Hongquan Liu, Zhixiang Cui, Mao Chen, Baojun Zhao. Phase equilibria study of the ZnO – “FeO” – SiO2 – Al2O3 system at PО2 10–8 atm. Metallurgical and Materials Transactions B. 2016. Vol. 47, No. 2. pp. 1113–1123.
21. Chen Ch., Zhang L., Jahanshahi Sh. Thermodynamic modeling of arsenic in copper smelting processes. Metallurgical and Materials Transactions B. 2010. Vol. 41, No. 6. pp. 1175–1185.
22. Swinbourne D. R., Kho T. S. Computational Thermodynamics Modeling of Minor Element Distributions During Copper Flash Converting. Metallurgical and materials Transactions В. 2012. Vol. 43, No. 4. pp. 823–829.
23. Voisin L., Itagaki K. Phase Relations, activities and minor element distribution in Cu – Fe – S and Cu – Fe – S – As systems saturated with carbon at 1473 K. Materials Transactions В. 2006. Vol. 47, No. 12. pp. 2963–2971.
24. Dosmukhamedov N. K. Teoreticheskie i tekhnologicheskie osobennosti pererabotki promproduktov i oborotnykh materialov tsvetnoy metallurgii (Theoretical and technological peculiarities of processing of non-ferrous metallurgy middlings and reverts). Almaty : DPS, 2008. 360 p.
25. Polyvyannyy I. R., Lata V. A. Metallurgiya surmy (Metallurgy of antimony). Alma-Ata : Gylym, 1991. 207 p.
26. Rozlovskiy A. A. Povedenie myshyaka pri proizvodstve tsvetnykh metallov (Behavior of arsenic during the production of non-ferous metals). Tsvetnye Metally = Non-ferrous metals. 1975. No. 11. pp. 17–19.

Language of full-text russian
Full content Buy
Back