Journals →  Tsvetnye Metally →  2016 →  #9 →  Back

NOBLE METALS AND ALLOYS
ArticleName Vacuum-thermal demercuration of waste coal sorbents of gold mining enterprises
DOI 10.17580/tsm.2016.09.06
ArticleAuthor Trebukhov S. A., Marki I. A., Nitsenko A. V., Trebukhov A. A.
ArticleAuthorData

JSC “Institute Metallurgy and Ore Benefication”, Almaty, Kazakhstan:

S. A. Trebukhov, Deputy Chief Executive Officer, e-mail: vohubert@mail.ru
I. A. Marki, Leading Researcher
A. V. Nitsenko, Head of Laboratory of Vacuum Processes
A. A. Trebukhov, First Category Engineer

Abstract

This paper shows the results of technological testings of vacuum-thermal demercuration of waste coal sorbents of gold mining enterprises on continuous vibro-vacuum unit VVU-1M (ВВУ-1М). We defined the volt-ampere and mechanical characteristics of vibro-vacuum unit operation, providing the uniform movement of waste coal sorbent by its shovel and truck method, and carried out the calibration of independent assemblies of unit's shovel and truck method. The enlarged technology testings were carried out on vibro-vacuum unit VVU-1Ms, using coal sorbents, containing 1.96% of mercury and 2.5% of moisture. Distribution of mercury by vacuum-thermal processing products is shown. During the vibro-liquefaction process, 99.95–99.98% of mercury was extracted in condensate for 5–7 minutes of material holding in furnace's isothermal zone in the temperature range of 350–400 oС and pressure range of 1.33–4.0 kPa. The unit design allows to reach the high rate of demercuration by combination of the basic parameters: temperature, pressure, time of material holding in reactor (productive capacity of equipment). The obtained sorbents with residual content of mercury (0.0005–0.0007%) can be send to further burning for traditional additional recovery of noble metals. According to this, the offered technology of preliminary vacuum-thermal removement of mercury from waste coal sorbents of gold mining factories allows to remove more than 99.9% of mercury from coal sorbent by ecologically-pure method and can be used in industrial scale at gold-mining enterprises.

keywords Сoal in pulp, coal sorbent, mercury, demercuration, vacuum, technology, ecology, extraction, noble metals
References

1. Petrosyan V. S. Zagryaznenie rtutyu: prichiny i posledstviya (Contamination with mercury: reasons and consequences). Ekologiya i promyshlennost = Ecology and Industry of Russia. 1999. No. 12. pp. 34–38.
2. Skurlatov Yu. I., Duka G. G., Miziti A. Vvedenie v ekologicheskuyu khimiyu (Introduction in ecological chemistry). Moscow : Vysshaya shkola, 1994. 137 p.
3. Fain X., Ferrari Ch.P., Dommergue A., Albert M., Battle M., Severinghaus J., Arnaud L., Barnola J.-M., Cairns W., Barbante C., Boutron C. Polar firn air reveals large-scale impact of anthropogenic mercury emissions during the 1970s. Proceeding of the National Academy of Sciences of the United States of America. 2009. Vol. 106, No. 38. pp. 16114–16119.
4. Melnikov S. M. Metallurgiya rtuti (Metallurgy of mercury). Moscow : Metallurgiya, 1971. 470 p.
5. Rajaee M., Long R. N., Renne E. P., Basu N. Mercury Exposure Assessment and Spatial Distribution in A Ghanaian Small-Scale Gold Mining Community. International Journal of Environmental Research and Puplic. 2015. Vol. 12, No. 9. pp. 10755–10782.
6. Rtutnoe zagryaznenie: realii novogo vremeni. Kazakhstan (Mercury contamination: new time realities. Kazakhstan). Green Women. Analytical ecological agency. Available at : http://www.greenwomen.kz/pdf/mercury_review.pdf (in Russian)
7. Coetzee J. W., Gray D. E. Counter-current vs co-current flow in carbon-inpulp adsorption circuits. Minerals Engineering. 1999. Vol. 12, No. 4. pp. 415–422.
8. Buson G. D., Ngandu D. S., Le Roux J. C., Rogans E. J. The West Driefontein reclamation carbon-in-pulp plant; pilot plant testwork, design, commissioning and optimization. Journal of the South African Institute of Mining and Metallurgy. 1999. Vol. 99, No. 2. pp. 63–67.
9. Velasquez-Lopez P. C., Veiga M. M., Klein B., Shandro J., Hall K. Cyanidation of mercury-rich tailings in artisanal and small-scale gold mining: identifying strategies to manage environmental risks in Southern Ecuador. Journal of Cleaner Production. 2011. Vol. 19, No. 9/10. pp. 1125–1133.
10. Granovskiy E. I., Khasenova S. K., Tarasova A. M., Frolova V. A. Zagryaznenie rtutyu okruzhayushchey sredy i metody demerkurizatsii (Mercury contamination of environment and demercuration methods). Almaty : Nauka, 2001. 352 p.
11. Khrapunov V. E., Isakova R. A., Abramov A. S., Volodin V. N. Pererabotka rtutsoderzhashchego mineralnogo i tekhnogennogo syrya pri ponizhennom davlenii (Processing of mercury-containing mineral and technogenic raw materials with decreased pressure). Almaty : Kompleks, 2004. 320 p.
12. Isakova R. A., Khrapunov V. E., Volodin V. N. Vakuumnye tekhnologii pererabotki polimetallicheskogo syrya i rafinirovaniya metallov: razrabotki i perspektivy (Vacuum processing technologies of polymetallic raw materials and metals refining: development and future prospects). Tsvetnye Metally = Nonferrous metals. 2012. No. 10. pp. 69–74.
13. Khrapunov V. E., Chelokhsaev L. S., Trebukhov S. A., Marki I. A. Apparat dlya vakuumtermicheskoy pererabotki sypuchikh materialov (Unit for vacuumthermal processing of bulk solids). Patent RK, No. 13257. Published: May 15, 2006. Bulletin No. 5.
14. Trebukhov S. A., Marki I. A., Nitsenko A. V., Burabaeva N. M., Tuleutay F. Kh. Demerkurizatsiya otrabotannykh ugolnykh sorbentov zolotoizvlekatelnykh predpriyatiy vakuumtermicheskim sposobom (Demercuration of waste coal sorbents of gold recovery plants by vacuum heat treatment). Kompleksnoe ispolzovanie mineralnogo syrya = Complex use of Mineral Resources. 2015. No. 2. pp. 35–41.

Language of full-text russian
Full content Buy
Back