Journals →  Tsvetnye Metally →  2016 →  #10 →  Back

Research-to-practice conference RIVS-2016
Hydrometallurgy
ArticleName State of development of modern biohydrometallurgical technologies and prospects of their use in Russia
DOI 10.17580/tsm.2016.10.04
ArticleAuthor Bulaev A. G., Pershina E. V., Ukraintsev I. V.
ArticleAuthorData

S. N. Vinogradsky Institute of Microbiology, Federal Research Centre “Fundamentals of Biotechnology”, Moscow, Russia:
A. G. Bulaev, Acting Head of Laboratory, e-mail: bulaev.inmi@yandex.ru


Saint Petersburg State University, Saint Petersburg, Russia:
E. V. Pershina, Senior Lecturer


Joint Enterprise of Scientific and Production Association “RIVS”, Saint Petersburg, Russia:
I. V. Ukraintsev, Director of Department of Hydrometallurgy

Abstract

Biohydrometallurgy allows the processing of poor and ill-conditioned ores, rebellious concentrates, technological products and metallurgical production wastes. Near 20 types of microorganisms, capable to use the inorganic ore material substances, are applied in biohydrometallurgical processes. A range of patented biohydrometallurgical technologies is widely applied in different countries. The biggest practical success is in heap bioleaching of copper ores and agitation leaching of rebellious gold-bearing concentrates (including doublerebellious ones). Biohydrometallurgical development prospects are connected both with solving of various technological problems of already existing technologies, and with development of new technologies for processing of the raw material types, which are not currently used. Russia is one of global mineral extraction leaders, having various sulfide ore deposits but with rather limited experience of application of biohydrometallurgical technologies. It has only one enterprise, which since 2000, has been industrially processing the refractory ores (concentrates) of Olimpiada deposit by biooxidation. A large part of biohydrometallurgical investigations, carried out in leading Russian scientific-research organizations, shows that introduction of biohydrometallurgy processes in Russia can be rather prospective. However nowadays it is not realized on practice.

This work was carried out within the joint scientific-research project of Joint Enterprise of Scientific and Production Association “RIVS” and Federal Research Centre “Fundamentals of Biotechnology”.

keywords Biohydrometallurgy, acidophile microorganisms, sulfide ores and concentrates, poor and off-balance ores
References

1. Kondrateva T. F., Bulaev A. G., Muravev M. I. Mikroorganizmy v biogeotekhnologiyakh pererabotki sulfidnykh rud (Microorganisms in sulfide ore processing biotechnologies). Moscow : Nauka, 2015. 212 p.
2. Valdes J., Pedroso I., Quatrini R., Dodson R. J., Tettelin H., Blake R. 2nd, Eisen J. A., Holmes D. S. Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics. 2008. No. 9.
3. Zhang X., Niu J., Liang Y., Liu X., Yin H. Metagenome-scale analysis yields insights into the structure and function of microbial communities in a copper bioleaching heap. Genetics. 2016. 17:21.
4. Brierley J. A. Response of microbial systems to thermal stress in heapbiooxidation pretreatment of refractory gold ores. Hydrometallurgy. 2003. Vol. 71. pp. 13–19.
5. Karavayko G. M., Rossi J., Agate A., Grudev S., Avakyan Z. A. Biogeotekhnologiya metallov. Prakticheskoe rukovodstvo (Biotechnology of metals. Practical guidance). Moscow : Center of international projects GNKT, 1989. 375 p.
6. Sovmen V. K., Guskov V. N., Belyy A. V., Kuzina Z. P., Drozdov S. V., Savushkina S. I., Mayorov A. M., Zakrevskiy M. P. Pererabotka zolotonosnykh rud s primeneniem bakterialnogo okisleniya v usloviyakh Kraynego Severa (Processing of gold-bearing ores with application of bacterial oxidation in the Far North). Novosibirsk : Nauka, 2007. 144 p.
7. BIOX® Technology. Biomin. Available at: http://www.biomin.co.za/biox/technology.html.
8. Van Aswegen P. C., Van Niekerk J., Olivier W. The BIOXΤΜ process for the treatment of refractory gold concentrate. Biomining. Ed.: D. E. Rawlings, B. D. Johnson. Berlin – Heidelberg : Springer Verlag, 2007. pp. 1–35.
9. Gentina J. C., Acevedo F. Application of bioleaching to copper mining in Chile. Electronic Journal of Biotechnology. 2013. Vol. 16, No. 3. DOI: 10.2225/vol16-issue3-fulltext-12
10. Johnson D. B. Biomining — biotechnologies for extracting and recovering metals from ores and waste materials. Current Opinion in Biotechnology. 2014. Vol. 30. pp. 24–31.
11. Wang X., Li J., Sun Z., Liu Y. An industrial bioleaching of fluorinebearing uranium ore. Proceedings of the 19th International Biohydrometallurgy Symposium (IBS 2011). Ed.: G. Qiu, T. Jiang, W. Qin, X. Liu, Y. Yang, H. Wang. Changsha, China, 2011. pp. 601–604.
12. Zang H., Wen J. Heap bioleaching of a low grade nickel-cobalt sulfide ore. Proceedings of the 19th International Biohydrometallurgy Symposium (IBS 2011). Ed.: G. Qiu, T. Jiang, W. Qin, X. Liu, Y. Yang, H. Wang. Changsha, China, 2011. p. 826.
13. Riekkola-Vanhanen M. Talvivaara black schist bioheap leaching de monstration plant. Advanced Materials Research. 2007. Vol. 20/21. pp. 30–33.
14. Logan T. S., James A. Brierley Whole-ore heap biooxidation of sulfidic gold-bearing ores. Biomining. Ed.: D. E. Rawlings, B. D. Johnson. Berlin – Heidelberg : Springer Verlag, 2007. pp. 115–141.
15. Gericke M., Neale J. W., Van Staden P. J. A Mintek perspective of the past 25 years in minerals bioleaching. Journal of the South African Institute of Mining and Metallurgy. 2009. Vol. 109. pp. 567–585.
16. Karavayko G. I., Sedelnikova G. V., Aslanukov R. Ya., Savari E. E., Panin V. V., Adamov E. V., Kondrateva T. F. Biogidrometallurgiya zolota i serebra (Biohydrometallurgy of gold and silver). Tsvetnye Metally = Non-ferrous metals. 2000. No. 8. pp. 20–26.
17. Olivier J. W., Heuvel C. A., Jardine J. G. Primenenie printsipov tretego pokoleniya tekhnologii BIOX® pri razrabotke proekta ustanovki BIOX® Runruno. Biomin (Application of the third-generation principles of the BIOX® technology during the development of the project of BIOX® unit Runruno. Biomin). Available at: www.biomin.co.za/pdf/Rus-MINEX-2014-Application-of-BIOX-GIII-Principles-paper.pdf
18. Morin D. H. R., d’Hugues P. Bioleaching of a cobalt-containing pyrite in stirred reactors: a case study from laboratory scale to industrial application. Biomining. Ed.: D. E. Rawlings, B. D. Johnson. Berlin – Heidelberg : Springer Verlag, 2007. pp. 35–55.
19. Gericke M. Base metal tank bioleaching: from laboratory test work to commercialization. Proceedings of the 2th International Biohydrometallurgy Symposium (IBS 2015). Ed.: M. Z. Mubarok. Sanur, Indonesia, 2011. pp. 9–12.
20. Batty J. D., Rorke G. V. Development and commercial demonstration of the BioCOPTM thermophile process. Hydrometallurgy. 2006. Vol. 83. pp. 83–89.
21. Harvey T. J., Bath M. The GeoBiotics GEOCOAT® technology — progress and challenges. Biomining. Ed.: D. E. Rawlings, B. D. Johnson. Berlin – Heidelberg : Springer Verlag, 2007. pp. 97–112.
22. Parada P., Morales P., Collao R., Bobadilla R., Badilla R. Biomass production and inoculation of industrial bioleaching processes. Advanced Materials Research. 2013. Vol. 825. pp. 296–300.
23. Muravyov M. I., Bulaev A. G. Two-step oxidation of a refractory goldbearing sulfidic concentrate and the effect of organic nutrients on its biooxidation. Minerals Engineering. 2013. Vol. 45. pp. 108–114.
24. Bulaev A. G., Kanaeva Z. K., Kanaev A. T., Kondrateva T. F. Biookislenie zolotosoderzhashchego kontsentrata dvoynoy upornosti (Biooxidation of a double-refractory gold-bearing sulfide ore concentrate). Mikrobiologiya = Microbiology. 2015. Vol. 84, No. 5. pp. 561-569.
25. Cherkasova D. V., Bakaeva M. D., Chetverikov S. P., Loginov O. N. Biologicheskoe vyshchelachivanie otkhodov flotatsii sulfidnykh mednotsinkovykh rud v perkolyatsionnoy ustanovke (Biological Leaching of Waste of Sulphidic Copper-Zinc Ores Flotation in Percolators). Biotekhnologiya = Biotechnology in Russia. 2012. No. 6. pp. 61–69.
26. Cherkasova D. V., Bakaeva M. D., Chetverikov S. P., Loginov O. N. Biologicheskoe vyshchelachivanie tsinka i medi iz otkhodov flotatsionnogo obogashcheniya sulfidnykh rud Buribaevskogo gorno-obogatitelnogo kombinata v perkolyatsionnoy ustanovke (Bilolgical leaching of zinc and copper from the sulphidic ores flotation waste of Buribay concentrating industrial complex in the perkolation). Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk = Proceedings of the Samara Scientific Center of the Russian Academy of Sciences. 2013. Vol. 15, No. 3 (5). pp. 1690–1693.
27. Kondrat’eva T. F., Pivovarova T. A., Bulaev A. G., Melamud V. S., Muravyov M. I., Usolcev A. V., Vasil’ev E. A. Percolation bioleaching of copper, zinc and gold recovery from flotation tailings of the sulfide complex ores of the Ural region, Russia. Hydrometallurgy. 2012. Vol. 111/112. pp. 82–86.
28. Sagdieva M. G., Borminskiy S. I., Mavjudova A. M., Cherkasova G. V., Scott B. Bioleaching of Whitehorse copper tailing with use of tank method. Proceedings of the 19th International Biohydrometallurgy Symposium (IBS 2011). Ed.: G. Qiu, T. Jiang, W. Qin, X. Liu, Y. Yang, H. Wang. Changsha, China, 2011. pp. 593–596.
29. Bulaev A. G., Melamud V. S. Izvlechenie tsvetnykh metallov iz khvostov flotatsii polimetallicheskoy rudy (Extraction of non-ferrous metals from polymetallic ore flotation tailings). Sovremennye protsessy kompleksnoy i glubokoy pererabotki trudnoobogatimogo mineralnogo syrya (Plaksinskie chteniya 2015) (Modern processes of complex and deep processing of complex mineral raw materials (Plaksin readings 2015)). Irkutsk, September 21–25, 2015. pp. 425–428.
30. Gosudarstvennyy doklad “O sostoyanii i ispolzovanii mineralno-syrevykh resursov Rossiyskoy Federatsii v 2012 godu” (State report “About the state and use of mineral resources of Russian Federation in 2012”). Moscow : Information-analytical center “Mineral”, 2014. (in Russian)
31. Khalezov B. D. Kuchnoe vyshchelachivanie mednykh i medno-tsinkovykh rud (otechestvennyy opyt) : monografiya (Heap leaching of copper and copper-zinc ores (Russian experience) : monograph). Ekaterinburg : Editorial-Publishing Department of Ural Branch of Russian Academy of Sciences, 2013. 348 p.
32. Polyus Gold International Annual Report 2015. Polyus. Available at : http://polyus.com/ru/investors/results-and-reports/ (in Russian)
33. Proizvodstvo zolota. Navoiyskiy gorno-metallurgicheskiy kombinat (Gold production. Navoi mining-metallurgical combine). Available at : www.ngmk.uz/ru/factory/zoloto (in Russian)
34. Proekt “Suzdal”. Nordgold (“Suzdal” project. Nordgold). Available at : www.nordgold.com/ru/operations/production/suzdal/ (in Russian)
35. Zabolotskiy A. I., Sitnikova T. I., Yashchenko I. E., Zabolotskiy K. A. Skvazhinnoe podzemnoe vyshchelachivanie medi (Well underground leaching of copper). Gornaya Promyshlennost = Mining Industry Journal. 2008. No. 5. pp. 17–21.
36. OAO “Uralgidromed”. Russkaya mednaya kompaniya (JSC “Uralgipromed”. Russian Copper Company). Available at : www.rmk-group.ru/ru/enterprises/uralgidromed/ (in Russian)

Language of full-text russian
Full content Buy
Back