Journals →  Цветные металлы →  2016 →  #11 →  Back

МАТЕРИАЛОВЕДЕНИЕ
ArticleName Сплавы ванадия на пороге широкого применения в энергетике
DOI 10.17580/tsm.2016.11.08
ArticleAuthor Калин Б. А., Стальцов М. С., Тищенко А. Г., Чернов И. И.
ArticleAuthorData

Национальный исследовательский ядерный университет «Московский инженерно-физический институт», Москва, Россия:

Калин Б. А., заведующий кафедрой физических проблем материаловедения

Стальцов М. С., доцент

Тищенко А. Г., студент

Чернов И. И., профессор, i_chernov@mail.ru

Abstract

Приведен краткий обзор исследований ванадиевых сплавов как конструкционных материалов для ядерной и термоядерной энергетики будущего. Рассмотрены важнейшие свойства ванадиевых сплавов и проведено их сравнение со свойствами аустенитных и ферритно-мартенситных сталей. Ванадий достаточно распространенный в природе металл, и ряд его сплавов обладает хоро шей технологичностью. Кратковременные показатели проч ностных свойств ванадиевых сплавов остаются на достаточно высоком уровне вплоть до температуры 970 K. По показателям жаропрочных свойств (термической ползучести, длительной прочности) ванадиевые сплавы существенно превышают аналогичные характеристики аустенитной и ферритно-мартенситной реакторных сталей. Ванадиевые сплавы характеризуются более высокой температурой плавления и меньшей плотностью, чем стали, обладают меньшим тепловым расширением и большей теплопроводностью. При этом благодаря лучшим теплофизическим свойствам, ванадиевые сплавы способны выдерживать бóльшие тепловые нагрузки, чем стали. Анализ ядерно-физических свойств показал, что скорость наработки гелия в ванадиевых сплавах в 2–3 раза меньше, чем в сталях, скорость наработки водорода и ядерный нагрев также значительно ниже, и эти эффекты обеспечивают большое преимущество ванадиевых сплавов перед сталями. Сплавы системы V – (4–5) % Cr – (4–10) % Ti обладают наибольшим потенциалом малой активируемости и имеют преимущества по сравнению с малоактивируемыми сталями. При исследовании радиационного охрупчивания был сделан вывод, что температура 700 K должна быть принята как нижний предел рабочих температур для сплавов ванадия при использовании их в качестве реакторных конструкционных материалов. Данные о радиационной ползучести ванадиевых сплавов крайне ограничены и противоречивы. Отмечены пути решения существующих проблем: гелия и водорода соответствующим легированием; чувствительности к примесям использованием высокочистого ванадия и/или специальным легированием; стойкости в жидком натрии использованием композитного материала «сталь – ванадиевый сплав – сталь».

Работа выполнена в рамках Центра ядерных систем и материалов при государственной поддержке Программы повышения конкурентоспособности НИЯУ МИФИ (соглашение с Минобрнауки РФ от 27 августа 2013 г., № 02.а03.21.0005), реализации государственного задания в сфере научной деятельности № 3.483.2014/K от 10.06.2014 г.

keywords Ванадий, ванадиевые сплавы, технологичность, эксплуатация при высокой температуре, теплофизические свойства, ядерно-физические свойства, радиационная стойкость, коррозионная стойкость, гелий, водород, удержание водорода
References

1. Smith D. L., Loomis B. A., Diercks D. R. Vanadium-base alloys for fusion reactor applications — a review. Journal of Nuclear Materials. 1985. Vol. 135. pp. 125–139.
2. Ivanov L. I., Platov Yu. M. Radiatsionnaya fizika metallov i ee prilozheniya (Radiation physics of metals and its applications). Moscow : Nauka, 2002. 300 p.
3. Kalin B. A., Platonov P. A., Tuzov Yu. V. et al. Fizicheskoe materialovedenie. Tom 6. Konstruktsionnye materialy yadernoy tekhniki : uchebnik dlya vuzov (Physical materials science. Volume 6. Construction materials of nuclear engineering : tutorial for universities). Moscow : National Research Nuclear University “MEPhI”, 2012. 736 p.
4. Nikulin S. A., Votinov S. N., Rozhnov A. B. Vanadievye splavy dlya yadernoy energetiki (Vanadium alloys for nuclear energetics). Moscow : MISiS, 2014. 206 p.
5. Butterworth G. J., Forty C. B. A. The significance of sequential charged particle reactions in the activation of vanadium alloys. Journal of Nuclear Materials. 1994 .Vol. 212–215, P. 1. pp. 628–634.
6. Vatulin A. V. Maloaktiviruemye konstruktsionnye materialy dlya yadernoy tekhniki (TVS YaEU) (Low-activated structural materials for nuclear plant (fuel assembly of nuclear power facility)). Voprosy atomnoy nauki i tekhniki. Seriya: Materialovedenie i novye materialy = Problems of Atomic Science and Technology. Series: Materials science and new materials. 2004. No. 1 (62). pp. 26–41.
7. Lyublinskiy I. E., Vertkov A. V., Evtikhin V. A., Votinov S. N., Gubkin I. N., Karasev Yu. V., Dedyurin A. I., Borovitskaya I. V., Kalashnikov A. N. Optimizatsiya legirovaniya splavov sistemy V – Ti – Cr (Optimization of alloying of V – Ti – Cr system alloys). Voprosy atomnoy nauki i tekhniki. Seriya: Termoyadernyy sintez = Problems of atomic science and technology. Series: Thermonuclear fusion. 2005. No. 3. pp. 70–78.
8. Mikhaylov V. N., Evtikhin V. A., Lyublinskiy I. E. et al. Litiy v termoyadernoy i kosmicheskoy energetike XXI veka (Lithium in thermonuclear and space energetics of the XXI century). Moscow : Energoatomizdat, 1999. 528 p.
9. Smith D. L., Billone M. C., Natesan K. Vanadium-base alloys for fusion firstwall/blanket applications. International Journal of Refractory Metals & Hard Materials. 2000. Vol. 18. pp. 213–224.
10. Potapenko V. V., Drobishev V. A., Filkin V. Y. et al. Manufacture of semifinished items of alloys V – 4 Ti – 4 Cr and V – 10 Ti – 5 Cr for use as a structural material in fusion applications. Journal of Nuclear Materials. 1996. Vol. 233– 237, P. 1. pp. 438–441.
11. Jiang Z. Z., Yu S. H., Chun Y. B. et al. Grain refinement of pure vanadium by equal channel angular pressing. Materials Science and Engineering A. 2008. Vol. 479. pp. 285–292.
12. Duquesnes V., Guilbert T., Le Flem M. French investigation of a new V – 4 Cr – 4 Ti grade: CEA-J57 – Fabrication and microstructure. Journal of Nuclear Materials. 2012. Vol. 426. pp. 96–101.
13. Ditenberg I. A., Tyumentsev A. N., Grinyaev K. V. et al. Osobennosti defektnoy substruktury splava V–4Ti–4Cr v zavisimosti ot metoda plasticheskoy deformatsii (Peculiarities of the defect substructure of the alloy V – 4 Ti – 4 Cr depending on the plastic deformation method). Voprosy atomnoy nauki i tekhniki. Seriya: Termoyadernyy sintez = Problems of atomic science and technology. Series: Thermonuclear fusion. 2012. No. 3. pp. 27–35.
14. Chen J. M., Chernov V. M., Kurtz R. J., Muroga T. Overview of the vanadium alloy researches for fusion reactors. Journal of Nuclear Materials. 2011. Vol. 417. pp. 289–294.
15. Vol A. E. Stroenie i svoystva dvoynykh metallicheskikh sistem. Tom 2. Sistemy vanadiya, vismuta, vodoroda, volframa, gadoliniya, galliya, gafniya, disproziya, evropiya, zheleza (Structure and properties of double metallic systems. Volume 2. Systems of vanadium, bismuth, hydrogen, tungsten, gadolinium, gallium, hafnium, disprosium, europium and iron). Moscow : Fizmatgiz, 1962. 983 p.
16. Kornilov I. I., Glazova V. V. Vzaimodeystvie tugoplavkikh metallov perekhodnykh grupp s kislorodom (Interaction of refractory transition group metals with oxygen). Moscow : Nauka, 1967. 254 p.
17. Richard Kieffer. Vanadiy, niobiy, tantal (Vanadium. Niobium. Tantalum). Moscow : Metallurgiya, 1968. 311 p.
18. Efimov Yu. V., Baron V. V., Savitskiy E. M. Vanadiy i ego splavy (Vanadium and its alloys). Moscow : Nauka, 1969. 254 p.
19. Voleynik V. V. Vysokotemperaturnaya elektrokhimiya i fizicheskaya khimiya vanadiya (High-temperature electrochemistry and physical chemistry of vanadium). Alma-Ata : Nauka, 1971. 108 p.
20. Kalin B. A., Staltsov M. S., Chernov I. I. Maloaktiviruemye vanadievye splavy dlya yadernoy i termoyadernoy energetiki: printsipy legirovaniya, radiatsionnaya stoykost, problema geliya i vodoroda (Low-activated vanadium alloys for nuclear and thermonuclear energy: principles of alloying, radiation resistance, problem of helium and hydrogen). Yadernaya fizika i inzhiniring = Nuclear physics and engineering. 2011. Vol. 2, No. 4. pp. 320–344.
21. Smith D. L., Chung H. M., Loomis B. A. et al. Development of vanadiumbase alloys for fusion first-wall-blanket applications. Fusion Engineering and Design. 1995. Vol. 29. pp. 399–410.
22. Solonin M. I., Chernov V. M., Gorokhov V. A. et al. Present status and future prospect of the Russian program for fusion lowactivation materials. Journal of Nuclear Materials. 2000. Vol. 283–287. pp. 1468–1472.
23. Muroga T., Nagasaka T., Abe K. et al. Vanadium alloys — overview and recent results. Journal of Nuclear Materials. 2002. Vol. 307–311. pp. 547–554.
24. Huang Q. Y., Wu Y. C., Li J. G. et al. Status and strategy of fusion materials development in China. Journal of Nuclear Materials. 2009. Vol. 386–388. pp. 400–404.
25. Butterworth G. J., Forty C. B. A. The significance of sequential charged particle reactions in the activation of vanadium alloys. Journal of Nuclear Materials. 1994. Vol. 212–215, Part 1. pp. 628–634.
26. Mann F. M. Low activation steels and alloys. U.S. Program on Redused-Activation Ferritic Steels. Clearwater, 1991. pp. 44–52.
27. Kondrik A. I., Kovtun G. P. Splavy na osnove vanadiya dlya termoyadernoy energetiki (Vanadium-based alloys for thermal-nuclear energetics). Visnik Kharkivskogo universitetu. Seriya: Yadra, chastinki, polya = Bulletin of Kharkiv university. Series: Nuclei, particles, fields. 2008. Vol. 823, No. 3 (39). pp. 4–24.
28. Zinkle S. J., Matsui H., Smith D. L. et al. Research and development on vanadium alloys for fusion applications. Journal of Nuclear Materials. 1998. Vol. 258–263. pp. 205–214.
29. Matsui H., Tanaka M., Yamamoto M., Tada M. Embrittlement of vanadium alloys doped with helium. Journal of Nuclear Materials. 1992. Vol. 191–194. pp. 919–923.
30. Kurtz R. J., Abe K., Chernov V. M. et al. Recent progress on development of vanadium alloys for fusion. Journal of Nuclear Materials. 2004. Vol. 329–333. pp. 47–55.

31. Troyanov V. M., Bulkanov M. G., Kruglov A. S. et al. Irradiation creep of V – Ti – Cr alloy in BR-10 reactor core instrumented experiments. Journal of Nuclear Materials. 1996. Vol. 233–237. pp. 381–384.
32. Li M., Hoelzer D. T., Grossbeck M. L. et al. Irradiation creep of the US Heat 832665 of V – 4 Cr – 4 Ti. Journal of Nuclear Materials. 2009. Vol. 386–388. pp. 618–621.
33. Tsai H., Matsui H., Billone M. C. et al. Irradiation creep of vanadium-base alloys. Journal of Nuclear Materials. 1998. Vol. 258–263. pp. 1471–1475.
34. Loomis B. A., Smith D. L. Vanadium alloys for structural applications in fusion systems: a review of vanadium alloy mechanical and physical properties. Journal of Nuclear Materials. 1992. Vol. 191–194. pp. 84–91.
35. Matsui H., Gelles D. S. Large swelling in V – 5 Fe alloy after irradiation in FFTF. ANL. 1989. pp. 112–128.
36. Votinov S. N., Golovnin I. S., Kolotushkin V. P. Problemy razrabotki perspektivnykh materialov dlya obolochek tvelov reaktorov na bystrykh neytronakh (Problems of development of prospective materials for the TFE shells on fast neurons). V sbornike: Atomnye elektricheskie stantsii Rossii. 60 let atomnoy promyshlennosti (In the collection: Nuclear energetic stations in Russia. 60 years of nuclear industry). Moscow : Concern “Rosenergoatom”, 2005. pp. 313–335.
37. Garner F. A., Gelles D. S., Takahashi H. et al. High swelling rates observed in neutron-irradiated V – Cr and V – Si binary alloys. Journal of Nuclear Materials. 1992. Vol. 191–194. pp. 948–951.
38. Matsui H., Nakajima H., Yoshida S. Microstructural evolution in vanadium alloys by fast neutron irradiation. Journal of Nuclear Materials. 1993. Vol. 205. pp. 452–459.
39. Chung H. M., Loomis B. A., Smith D. L. Effects of irradiation damage and helium on swelling and structure of vanadium-base-alloys. Journal of Nuclear Materials. 1994. Vol. 212–215. pp. 804–812.
40. Kolbasov B. N., Borisov A. A., Vasilev N. N. et al. Kontseptsiya demonstratsionnogo termoyadernogo energeticheskogo reaktora DEMO-S (The concept of demonstration thermonuclear enegretic reactor DEMO-S). Voprosy atomnoy nauki i tekhniki. Seriya: Termoyadernyy sintez = Problems of atomic science and technology. Series: Thermonuclear fusion. 2007. No. 4. pp. 3–13.
41. Votinov S. N., Kolotushkin V. P., Lyublinskii I. E. et al. Corrosion resistance of vanadium alloys clad by a ferritic corrosion-resistant steel in liquid-metal heat-transfer agents. Russian Metallurgy (Metally). 2009. No. 1. pp. 82–87.
42. Klueh R. L., De Van J. H. Effect of oxygen in sodium of vanadium and vanadium-titanium alloys. Journal of Less-Common Metals. 1970. Vol. 22. pp. 389–398.
43. Eliseeva O. I. Vzaimodeystvie vanadievykh splavov s zhidkim natriem v staticheskikh usloviyakh (Interaction of vanadium alloys with liquid sodium in static conditions). Voprosy atomnoy nauki i tekhniki. Seriya: Termoyadernyy sintez = Problems of atomic science and technology. Series: Thermonuclear fusion. 2011. No. 2. pp. 3–20.
44. Votinov S. N., Kolotushkin V. P., Nikulin S. A., Turilina V. Yu. Making vanadium-based radiation-resistant alloys for fast-neutron reactor pin sheaths. Metal Science and Heat Treatment. 2009. Vol. 51, No. 5/6. pp. 238–244.
45. Alekseev O. A., Votinov S. N., Gubkin I. N. et al. Vanadievyy splav, plakirovannyy ferritnoy nerzhaveyushchey stalyu — material obolochek tvelov reaktorov na bystrykh neytronakh (Vanadium alloy cladding by ferritic stainless steel as material for fast reactors). Perspektivnye materialy = Journal of Advanced Materials. 2009. No. 4. pp. 34–42.
46. Chernov I. I., Kalin B. A., Staltsov М. S. et al. Gas porosity evolution and ion-implanted helium behavior in reactor ferritic/martensitic and austenitic steels. Journal of Nuclear Materials. 2015. Vol. 459. pp. 259–264.
47. Staltsov М. S., Chernov I. I., Kalin B. A. et al. Peculiarities of helium bubble formation and helium behavior in vanadium alloys of different chemical composition. Journal of Nuclear Materials. 2015. Vol. 461. pp. 56–60.
48. Chernov I. I., Staltsov M. S., Kalin B. A. et al. Mechanisms of helium porosity formation in vanadium alloys as a function of the chemical composition. Atomic Energy. 2011. Vol. 109, No. 3. pp. 176–183.
49. Staltsov M. S., Chernov I. I., Aung Kyaw Zaw et al. Gas porosity formation in the vanadium alloys V – W, V – Ta, V – Zr during helium-ion irradiation at 650 °C. Atomic Energy. 2014. Vol. 116, No. 1. pp. 35–41.
50. Staltsov M. S., Chernov I. I., Kalin B. A. et al. Abnormalities of physics and mechanical properties, behavior of helium and hydrogen in the V–Ti alloys (Overview). IOP Conference Series: Materials Science and Engineering. 2016. Vol. 130. 012013. DOI: 10.1088/1757-899X/130/1/012013
51. Aoyagi K., Torres E. P., Suda T., Ohnuki S. Effect of hydrogen accumulation on mechanical property and microstructure of V – Cr – Ti alloys. Journal of Nuclear Materials. 2000. Vol. 283–287. pp. 876–879.
52. Natesan K., Soppet W. K. Performance of V – Cr – Ti alloys in a hydrogen environment. Journal of Nuclear Materials. 2000. Vol. 283–287. pp. 1316–1321.
53. Yukawa H., Takagi M., Teshima A., Moringa M. Alloying effects on the stability of vanadium hydrides. Journal of Alloys and Compaunds. 2002. Vol. 330–332. pp. 105–109.
54. Torres P., Aoyagi K., Suda T. et al. Hydride formation and fracture of vanadium alloys. Journal of Nuclear Materials. 2002. Vol. 307–311. pp. 625–629.
55. Chen J., Xu Z., Yang L. The influence of hydrogen on tensile properties of V-base alloys developed in China. Journal of Nuclear Materials. 2002. Vol. 307–311. pp. 566–570.
56. Chen J., Muroga T., Qiu S. et al. Hydrogen embrittlement of a V4Cr4Ti alloy evaluated by different test methods. Journal of Nuclear Materials. 2004. Vol. 325. pp. 79–86.
57. Aung Kyaw Zaw, Chernov I. I., Staltsov M. S. et al. Uderzhanie vodoroda splavami vanadiy – titan (Hydrogen retention by vanadium-titanium alloys). Perspektivnye materialy = Journal of Advanced Materials. 2014. No. 7. pp. 30–36.
58. Aung Kyaw Zaw, Chernov I. I., Staltsov M. S., Kalin B. A., Korchagin O. N. Issledovanie povedeniya geliya i vodoroda v vanadievykh splavakh (Research of helium and hydrogen behavior in vanadium-based alloys). Tsvetnye Metally = Non-ferrous metals. 2014. No. 12. pp. 12–16.
59. Staltsov M. S., Aung Kyaw Zaw, Chernov I. I., Kalin B. A. Razvitie mikrostruktury i uderzhanie vodoroda v splavakh vanadiya pri obluchenii ionami geliya i vodoroda (Development of microstructure and hydrogen holding in vanadium alloys during the irradiation by helium and hydrogen ions). V sbornike: Doklady XXIV Mezhdunarodnoy konferentsii “Radiatsionnaya fizika tverdogo tela”, Sevastopol, 7 iyulya – 12 iyulya 2014 goda (In the collection: Reports of the XXIV International conference “Radiation physics of solid body”, Sevastopol, 7–12 July 2014). pp. 311–319.
60. Aung Kyaw Zaw, Chernov I. I., Staltsov M. S. et al. Hydrogen retention by vanadium – titanium alloys. Inorganic Materials : Applied Research. 2015. Vol. 6, No. 2. pp. 138–142.
61. Myers S. М., Besenbacher F., Bettiger J. Deuterium He-implanted Fe: trapping and the surface permeation barrier. Applied Physics Letters. 1981. Vol. 39. pp. 450–452.
62. Ananin V. M., Kalin B. A., Korchagin O. N. et al. Investigation of oxygen – titanium interaction in vanadium by internal friction method. Inorganic Materials: Applied Research. 2012. Vol. 3, Nо. 3. pp. 243–247.
63. Ruzinov L. P., Gulyanitskiy B. S. Ravnovesnye prevrashcheniya metallurgicheskikh reaktsiy : spravochnik (Equilibrium transformations of metallurgical reactions : reference book). Moscow : Metallurgiya, 1975. 416 p.
64. Barin I. Thermochemical data of pure substances. Weincheim : VCH Verlags Gesellshaft, 1995. 1885 p.
65. Golubkov A. N., Yukhimchuk A. A. Equilibrium pressure of protium and deuterium over vanadium dihydrate phase. Proceedings of NATO Advanced Research Workshop on Hydrogen Materials Science and Chemistry of Materials, 2–8 Seрtember, 1999, Katsiveli, Yaltoa, Ukraine. pp. 255–264.
66. Chernov I. I., Kalin B. A., Staltsov M. S. Osobennosti povedeniya vodoroda v reaktornykh materialakh (Peculiarities of hydrogen behavior in reactor materials). V sbornike: Doklady IV Mezhdunarodnoy konferentsii i VI Mezhdunarodnoy shkoly molodykh uchenykh i spetsialistov IHISM’10 “Vzaimodeystvie izotopov vodoroda s konstruktsionnymi materialami”, Voronezh, 5–10 iyulya 2010 goda (In the collection: Reports of the IV International conference and VI International school of young scientists and specialists IHISM'10 “Interaction of hydrogen isotopes with constructional materials”, Voronezh, July 5–10, 2010). Sarov, 2011. pp. 109–113.
67. Gui Li-Jiang, Liu Yue-Lin, Wangb Wei-Tian et al. First-principles investigation on vacancy trapping behaviors of hydrogen in vanadium. Journal of Nuclear Materials. 2013. Vol. 442. pp. S688–S693.
68. Barabash O. M., Koval Yu. N. Struktura i svoystva metallov i splavov: kristallicheskaya struktura metallov i splavov : spravochnik (Structure and properties of metals and alloys: crystalline structure of metals and alloys : reference book). Kiev : Naukova dumka, 1986. 598 p.
69. Votinov S. N., Kolotushkin V. P., Parfenov A. A. Radiatsionno-stoykie splavy na osnove vanadiya (Radiation-resistant vanadium-based alloys). Atomnaya nauka i promyshlennost = Nuclear science and industry. Available at : http://bus.znate.ru/docs/index-27154.html?page=3
70. Chernov I. I., Staltsov M. S., Kalin B. A. et al. Termodesorbtsionnoe issledovanie povedeniya geliya v splavakh vanadiy-titan, obluchennykh ionami He+ pri komnatnoy temperature (Thermal-desorption investigation of helium behavior in vanadium-titanium alloys, irradiated by He+ ions with the room temperature). Fizika i khimiya obrabotki materialov = Physics and Chemistry of Materials Treatment. 2012. No. 3. pp. 22–29.
71. Chernov I. I., Staltsov M. S., Kalin B. A. et al. Zakonomernosti formirovaniya gelievoy poristosti v vanadievykh splavakh v zavisimosti ot khimicheskogo sostava (Mechanisms of helium porosity formation in vanadium alloys as a function of the chemical composition). Atomnaya energiya = Atomic Energy. 2010. Vol. 109, No. 3. pp. 141–148.

Language of full-text russian
Full content Buy
Back