ArticleName |
The grain size of austenite in chromium-molybdenum-bearing steels after
austenitization at different temperatures |
ArticleAuthorData |
Z. I. Nekrasov Institute of Ferrous Metallurgy of NAS of Ukraine (Dnipro, Ukraine):
Lutsenko V. A., Dr. Eng., Leading Researcher, e-mail: lutsenko@optima.com.ua Golubenko T. A., Cand. Eng., Researcher Lutsenko O. V., Cand. Eng., Researcher
JSW «BSW — Management Company of Holding «BMC», (Zhlobin, Belarus): Glazunova N. A., Head of the Laboratory of Metallurgy central laboratory |
Abstract |
Сhromium-molybdenum-bearing steels (grades 42CrMo4 and 31CrMoV9) are used for production of the details of responsible application that are working in the conditions of heavy loads. The content of carbon and alloying elements in these steels, as well as the grain size have significant impact on a complex of mechanical properties. Influence of austenitization temperature on austenite grain size of chromium-molybdenum and chromium-molybdenum-vanadium steels is studied. It was revealed that the structure of both a.m. steels consisted of tempered martensite after pilot heat treatment. Dispersion of grain size values for austenite in both steel grades makes 4–7 points, while the most part of austenite grains were characterized as 5–6 points. Increased chromium content in 31CrMoV9 steel (compared with 42CrMo4 steel) and vanadium alloying resulted in obtaining of more fine austenite grain. It is shown that increase of austenitization temperature from 850 to 1050 °С leads to variation of the average nominal diameter of austenitic grain in the structure of chromium-molybdenum steel from 0.053 to 0.060 mm, and in chromium-molybdenum-vanadium steel — from 0.044 to 0.078 mm. Thereby, size of martensite plates increased from 2.5 to 3 points with the same increase of austenitization temperature from 850 to 1050 °С To form the coarse-grained structure, heating for an austenitization of the steels, containing chromium and molybdenum, should be made at high temperatures above A1+200 °C. |
References |
1. U. Jaroni, K.-P. Imlau, O. Hoffmann. Novye podkhody k innovatsionnym produktam i tekhnologiyam obrabotki davleniem v avtomobilestroenii (New approaches to innovative products and forming technologies in automotive industries). Chernye Metally = Ferrous metals. 2010. No. 12. pp. 46–53. 2. Greger М., Kursa M. New Forging Technology for Bottoms of Nuclear Plants Pressure Vessels. Metallurgical Journal. 2011. Vol. LXIV, No. 4. pp. 30–33. 3. Burko V. A. Osnovnye sposoby polucheniya profi lirovannykh zagotovok v resursosberegayushchikh tekhnologiyakh obemnoy shtampovki (Basic methods of obtaining of profi le billets in resource-saving technologies of die forging). Vіsnik Priazovskogo derzhavnogo tekhnіchnogo unіversitetu : zbirnik naukovikh prats (Bulletin of Pryazovia State Technical University : collection of scientifi c proceedings). Mariupol, 2012. Iss. 24. pp. 75–83. 4. Avdeev V. A., Druyan V. M., Kudrin B. I. Osnovy proektirovaniya metallurgicheskikh zavodov (Basis of design of metallurgical plants). Moscow : Intermet Engineering, 2002. 464 p. 5. Steel heat treatment: metallurgy and technologies. George E. Totten, editor — Portland State University : Portland (Oregon, USA). 2006. 820 p. 6. Lutsenko V. A., Matochkin V. A., Panfi lova T. N., Shcherbakova V. I. Vliyanie tekhnologii proizvodstva na kachestvennye kharakteristiki goryachekatanogo krupnosortnogo prokata iz khromomolibdenovoy elektrostali (Infl uence of production technology on qualitative characteristics of hot-rolled heavy bars & sections from chromium-molybdenium electric steel). Byulleten nauchno-tekhnicheskoy i ekonomicheskoy informatsii «Chernaya metallurgiya» = Bulletin of scientifi c-technical and economic information “Ferrous metallurgy”. 2009. Iss. 4(1312). pp. 57–59. 7. Pachurin G. V., Filippov A. A., Kuzmin N. A. Vliyanie khimicheskogo sostava i struktury stali na kachestvo prokata dlya izgotovleniya boltov (Influence of chemical composition and structure of steel on the quality of rolled products for bolts manufacturing). Mezhdunarodnyy zhurnal prikladnykh i fundamentalnykh issledovaniy = International journal of applied and fundamental investigations. 2014. No. 8. pp. 87–92. 8. ASM Handbook. Vol. 4. Heat Treating, ASM International, Metals Park, OH, USA, 1991. 2173 p. 9. Eduard Houdremont. Spetsialnye stali (Handbuch der Sonderstahlkunde). Translated from German; under the editorship of A. S. Zaymovskiy, M. L. Bernshteyn, V. S. Meskin. In two volumes, second edition. Moscow : Metallurgiya, 1966. 1274 p. 10. Romanov I. D., Shatsov A. A., Zakirova M. G. Struktura i svoystva niz kouglerodistoy martensitnoy stali, zakalennoy s kovochnogo na greva (Structure and properties of low-carbon martensitic steel, hardened from forging heating). Trudy Nizhegorodskogo gosudarstvennogo tekhnicheskogo universiteta imeni R. E. Alekseeva = Procee dings of Nizhny Novgorod State Technical University named after R. E. Alekseev. 2014. No. 2(104). pp. 206–212. 11. Lakhtin Yu. M. Metallovedenie i termicheskaya obrabotka metallov (Metal science and thermal treatment of metals). Moscow : Metallurgiya, 1983. 359 p. 12. Lutsenko V. A., Bobkov P. A., Golubenko T. N. et al. Structure formation in the heat treatment of alloy steel bar. Steel in Translation. 2013. Vol. 43, Iss. 6. pp. 394–398. 13. Lutsenko V. A., Bobkov P. A., Golubenko T. N., Drobyshevskiy L. A., Gritsaenko V. I. Osobennosti strukturoobrazovaniya konstruktsionnoy legirovannoy stali pri termicheskoy obrabotke sortovogo prokata (Basis of structure-formation of structural alloyed steel during thermal treatment of bar). Stal = Steel in Translation. 2013. No. 6. pp. 64–68. 14. Lagneborg Р., Siwecki Т., Zajac S., Hutchinson B. The role of vanadium in microalloyed steels. Scandinavian Journal of Metallurgy. 1999. Vol. 28(5). pp. 186–241.
|