Journals →  Tsvetnye Metally →  2017 →  #4 →  Back

RARE METALS, SEMICONDUCTORS
ArticleName Reaction ability of titanium-bearing raw materials during the titanium tetrachloride obtaining
DOI 10.17580/tsm.2017.04.07
ArticleAuthor Zanaveskin K. L., Maslennikov A. N., Zanaveskina S. M., Vlasenko V. I.
ArticleAuthorData

A. V. Topchiev Institute of Petrochemical Synthesis RAS, Moscow, Russia:

K. L. Zanaveskin, Senior Researcher, e-mail: zakon82@mail.ru

 

L. Ya. Karpov Scientific-Research Physical and Chemical Institute, Obninsk, Russia:
A. N. Maslennikov, Junior Researcher
S. M. Zanaveskina, Senior Researcher

 

JSC “YaregaRuda”, Ukhta, Russia:
V. I. Vlasenko, Chief Executive Officer

Abstract

We investigated the reaction ability during chlorination of rutile concentrate, titanium slag and new types of titanium-bearing raw materials — quarzleucoxene concentrate and autoclave concentrate. Experiments were carried out in fluidized bed reactor at the temperature of 750 oC with fivefold molar excess of carbon. Chlorination of titanium concentrates in fluidized bed reactor is carried out with gaseous reagents. That's why, the reaction ability of raw materials is firstly defined by TiO2 surface, available for interaction. Velocity of TiO2 chlorination is higher in porous grains of titanium concentrates, having developed surface. The structure of raw material grains is another factor, influencing on chlorination velocity. Crystal sizes of titanium dioxide, sizes of pores, qualitative and quantitative compositions of impurities define the velocity of diffusion of gaseous reagents into the grain. The higher it is, the bigger depth is found by gaseous reagents, and the bigger part of TiO2 surface takes part in chlorination, and the higher is the reaction ability of titanium raw materials. The carried out investigations showed that the reaction ability of investigated samples of raw materials is decreased in the range: autoclave concentrate > titanium slag > rutile concentrate > quartz-leucoxene concentrate.
This investigation was carried out with the Grant of the Russian Scientific Fund (project No.15-13-00171).

keywords Chlorination, fluidized bed, titanium raw materials, titanium tetrachloride, quartz-leucoxene concentrate, autoclave concentrate, rutile, titanium slag, Yaregskoe deposit
References

1. Titanium. IndexMundi — Country Facts. Available at : http://www.indexmundi.com/en/commodities/minerals/titanium
2. Gázquez M. J., Bolívar J. P., Tenorio R. G., Vaca F. A Review of the Production Cycle of Titanium Dioxide Pigment. Materials Sciences and Applications. 2014. No. 5. pp. 441–458. DOI: 10.4236/msa.2014.57048

3. Zhang W., Zhu Z., Cheng C. Y. A literature review of titanium metallurgical processes. Hydrometallurgy. 2011. Vol. 108. pp. 177–188. DOI: 10.1016/j.hydromet.2011.04.005
4. Sahu K. K., Alex T. C., Mishra D., Agrawal A. An overview on the production of pigment grade titania from titania-rich slag. Waste Manage Res. 2006. Vol. 24. pp. 74–79. DOI: 10.1177/0734242X06061016
5. Filippou D., Hudon G. Iron removal and recovery in the titanium dioxide feedstock and pigment industries. JOM. 2009. No. 10. pp. 36–42. DOI: 10.1007/s11837-009-0150-3
6. Braun J. H., Baidins A., Marganski R. E. TiO2 pigment technology: a review. Progress in Organic Coatings. 1992. Vol. 20. pp. 105–138.
7. Cardarelli F. Materials Handbook: A Concise Desktop Reference. 2nd edtion. London : Springer-Verlag Limited, 2008. 1340 p.
8. McNulty G. S. Production of Titanium Dioxide. NORM V International Conference. Sevilla, 19–22 March 2007. pp. 169–188.
9. Wang X., Zhang L., Shang G., Zhang G., Yuan J., Gong S. Processing copper–vanadium precipitate formed from crude TiCl4 in titania and titanium sponge production. Hydrometallurgy. 2009. Vol. 99. pp. 259–262. DOI: 10.1016/j.hydromet.2009.09.001
10. Shaofeng Xiong, Zhangfu Yuan, Zhoulan Yin, Wenbin Yan. Removal of the vanadium impurities from crude TiCl4 with high content of vanadium using a mixture of Al power and white mineral oil. Hydrometallurgy. 2012. Vol. 119–120. pp. 16–22. DOI: 10.1016/j.hydromet.2012.03.004
11. Wang M., Wang X., Ye P. Recovery of vanadium from the precipitate obtained by purifying the wash water formed in refining crude TiCl4. Hydrometallurgy. 2011. Vol. 110. pp. 40–43. DOI: 10.1016/j.hydromet.2011.08.005
12. Gonzalez R. A., Musick C. D., Tilton J. N. Process for controlling agglomeration in the manufacture of TiO2. Patent 5508015 US. Published: 16.04.1996.
13. Stanawey K. J. Overview of titanium dioxide feedstocks. Mining Engineering. 1994. Vol. 46. pp. 1367–1370.
14. Moodley S., Eric R. H., Kucukkaragoz C., Kale, A. Chlorination of Titania Feedstocks. 3rd International Symposium on High-Temperature Metallurgical Processing. Hoboken : John Wiley & Sons, Inc., 2012. pp. 93–104. DOI: 10.1002/9781118364987.ch12
15. Available at: http://www.mnr.gov.ru/upload/iblock/914/Report2014.pdf
16. Zanaveskin K. L., Maslennikov A. N., Makhin M. N., Zanaveskin L. N. Special features of the Yaregskoye deposit quartz-leucoxene rougher concentrate chemical and mineral composition. Obogashchenie Rud. 2015. No. 5. pp. 25–32. DOI: 10.17580/or.2015.05.05
17. Zanaveskin K. L., Maslennikov A. N., Makhin M. N., Zanaveskin L. N. Autoclave processing of quartz-leucoxene concentrate (Yaregskoe deposit). Tsvetnye Metally. 2016. No. 3. pp. 49–56. DOI: 10.17580/tsm.2016.03.08
18. Zanaveskin K. L., Lukashev R. V., Maslennikov A. N., Terekhov A. V. Makhin M. N., Zanaveskin L. N. Preparation of porous materials from a leucoxene concentrate. Inorganic Materials. 2016. Vol. 52, No. 8. pp. 796–801. DOI: 10.1134/S0020168516080185
19. Pistorius P. C. Ilmenite smelting: The basics. Journal of the Southern African Institute of Mining and Metallurgy. 2008. Vol. 108. pp. 35–43.
20. Pistorius P. C., Kotze H. Role of silicate phases during comminution of titania slag. Minerals Engineering. 2009. Vol. 22. pp. 182–189. DOI: 10.1016/j.mineng.2008.06.009
21. Kang J., Okabe T. H. Development of a Novel Titania Slag Upgrading Process Using Titanium Tetrachloride. Metallurgical and Material Transactions B. 2016. Vol. 47. pp. 320–329. DOI: 10.1007/s11663-015-0507-7
22. Stefanyuk S. L., Morozov I. S. Kinetics and mechanism of mineral chlorination (loparite, pyrochlore, zircon and euxenite). Zhurnal prikladnoy khimii. 1965. Vol. 38, No. 4. pp. 729–735.
23. Barin I., Schuler W. On the kinetics of the chlorination of titanium dioxide in the presence of solid carbon. Metallurgical and Materials Transactions B. 1980. No. 11 (2). pp. 199–07. DOI: 10.1007/BF02668402
24. Landsberg A., Hoatson C. L., Block F. E. The chlorination kinetics of zirconium dioxide in the presence of carbon and carbon monoxide. Metallurgical Transactions. 1972. Vol. 3. pp. 517–523. DOI: 10.1007/BF02642057
25. Pasquevich D. M., Amorebieta V. T. Mass spectrometric study of volatile products during the carbochlorination of zirconia. Berichte der Bunsengesellschaft für physikalische Chemie. 1992. Bd. 96. S. 530–533. DOI: 10.1002/bbpc.19920960403
26. Wendell E., Dunn J. R. High temperature chlorination of titanium bearing minerals: Part IV. Metallurgical transactions B. 1979. Vol. 10B. pp. 271–277. DOI: 10.1007/BF02652471

Language of full-text russian
Full content Buy
Back