Journals →  CIS Iron and Steel Review →  2017 →  #1 →  Back

ArticleName Study of the effect of complex alloying of high-manganese steel by Ti–Ca–N alloying composition on its microstructure, mechanical and operating properties
DOI 10.17580/cisisr.2017.01.04
ArticleAuthor K. N. Vdovin, D. A. Gorlenko, N. A. Feoktistov, V. K. Dubrovin
ArticleAuthorData

Nosov Magnitogorsk State Technical University (Magnitogorsk, Russia):

K. N. Vdovin, Dr. Eng., Prof., Head of the Chair of Metallurgy and Casting Processes, e-mail: kn.vdovin@gmail.com
D. A. Gorlenko, Cand. Eng., Assistant of Dept. of Foundry and Materials, e-mail: gorldima@yandex.ru
N. A. Feoktistov, Cand. Eng., Acting Associate Prof., Chair of Metallurgy and Casting Processes

 

South Ural State University (Chelyabinsk, Russia):
V. K. Dubrovin, Dr. Eng., Prof., Chair of Pyrometallurgy and Casting Technologies

Abstract

The paper presents examination of the effect of complex alloying of high-manganese austenite steel by Ti–Ca–N alloying composition (1–3%) in cast state and after quenching. The regularities of variation of grain size and austenite micro-hardness, amount of carbide phase, hardness, abrasive and impactabrasive wear resistance are determined depending on amount of introducing alloying composition and alloy cooling rate in the crystallization temperature range. It is shown that introduction of 1–2% of alloying composition in the alloy is the most rational option; at the same time abrasive and impact-abrasive wear resistance of the alloy increases. Based on this study, it is recommended to use this alloying complex for the components made of high-manganese steel that are working in complicated conditions including combination of high contact and impact loads.

keywords High-manganese steel, complex alloying composition titaniumcalcium-nitrogen, quenching, cooling rate, crystallization
References

1. M. Abbasi, Sh. Kheirandish, Y. Kharrazi, J. Hejazi. The fracture and plastic deformation of aluminum alloyed Hadfield steels. Materials science and engineering A. 2009 (July). Vol. 513–514. pp. 72–76. Doi: 10.1016/j.msea.2009.02.023.
2. B. K. Zuidema, D. K. Subramanyam, W. C. Leslie. The effect of aluminum on the work hardening and wear resistance of Hadfield manganese steel. Metallurgical and materials transactions A. 1987 (September). Vol. 18. Iss. 9. pp. 1629–1639. Doi: 10.1007/BF02646146.
3. M. Mazar Atabaki, S. Jafari, H. Abdollah-pour. Abrasive wear behavior of high chromium cast iron and Hadfield steel - A comparison. Journal of iron and steel research international. 2012 (April). Vol. 19. Iss. 4. pp. 43–50. Doi: 10.1016/S1006-706X(12)60086-7.
4. W. S. Owen, M. Grujicic. Strain aging of austenitic Hadfield manganese steel. Acta Materialia. 1998 (December). Vol. 47. Iss.1. pp. 111–126. Doi: 10.1016/S1359-6454(98)00347-4.
5. C. Iglesias, G. Solórzano, B. Schulz. Effect of low nitrogen content on work hardening and microstructural evolution in Hadfield steel. Materials Characterization. 2009 (September). Vol. 60. Iss. 9. pp. 971–979. Doi: 10.1016/j.matchar.2009.03.015.
6. A. Nasajpour, A. H. Kokabi, P. Davami, S. Nikzad. Effect of molybdenum on mechanical and abrasive wear properties of coating of as weld Hadfield steel with flux-cored gas tungsten arc welding. Journal of Alloys and Compounds. 2016 (February). Vol. 659. pp. 262–269. Doi: 10.1016/j.jallcom.2015.11.071.
7. J. Qichuan, H. Zhenming, C. Donghuan, W. Shoushi, Y. Jiulin. Abrasion-resistant as-cast manganese steel with nodular carbide modified by calcium. Journal of Materials Science Letters. 1990 (May). Vol. 9, Iss. 5. pp. 616–617. Doi: 10.1007/BF00725896.
8. R. Radis, Ch. Schlacher, E. Kozeschnik, P. Mayr, N. Enzinger, H. Schrot tner, Ch. Sommitsch. Loss of Ductility Caused by AlN Precipitation in Hadfield Steel. Metallurgical and Materials Transactions A. 2012 (April). Vol. 43. Iss. 4. pp. 1132–1139. Doi: 10.1007/s11661-011-0968-5.
9. V. G. Prokoshkina, L. M. Kaputkina, Yu. I. Lojnikov. Peculiarities of deformation and structure formation in nitrogen-containing steels of various structural kinds. Journal of Materials Processing Technology. 2002 (September). Vol. 125–126. pp. 97–102. Doi: http://dx.doi.org/10.1016/S0924-0136(02)00325-4.
10. L. M. Kaputkina, V. G. Prokoshkina. Martensitic transformations, structure, and strengthness of processed high-nitrogen and high-carbon ferrous alloys. Journal de Physique IV. 2003 (October). Vol. 112. pp. 263–266. Doi: http://dx.doi.org/10.1051/jp4:2003879.
11. K. N. Vdovin, N. A. Feoktistov, E. V. Sinitskii, D. A. Gorlenko, N. A. Durov. Production of high-manganese steel in arc furnaces. Part 2. Steel in Translation. 2016 (January). Vol. 46. Iss. 1. pp. 16-20. Doi: 10.3103/S0967091216010150.
12. K. N. Vdovin, N. A. Feoktistov, E. V. Sinitskii, D. A. Gorlenko, N. A. Durov. Production of high-manganese steel in arc furnaces. Part 1. Steel in Translation. 2015 (October). Vol. 45. Iss. 10. pp. 729–732. Doi: 10.3103/S0967091215100186.
13. V. M. Kolokoltsev, K. N. Vdovin, D. A. Gorlenko, A. E. Gilin. Calculation of stacking fault energy and its influence on abrasive wear resistance of Hadfield cast steel cooled at different rates. CIS Iron and Steel Review. 2016. Vol. 11. pp. 35–40. Doi: http://dx.doi.org/10.17580/cisisr. 2016.01.06.
14. K. N. Vdovin, N. A. Feoktistov, D. A. Gorlenko. The effect of the cast high-manganese steel primary structure on its properties. Solid State Phenomena. 2016. Vol. 870. pp. 339–344. Doi: 10.4028/www.scientific.net/MSF.870.339.
15. K. N. Vdovin, D. A. Gorlenko, A. N. Zavalishchin. Carbide Transformations in Tempering of Complexly Alloyed White Cast Iron. Metal Science and Heat Treatment. 2015 (July). Vol. 57. Iss. 3. pp. 123–127. Doi: 10.1007/s11041-015-9848-8.
16. K. N. Vdovin, D. A. Gorlenko, N. A. Feoktistov. Characteristics of excess phase in cast high-manganese steel. Steel in Translation. 2016 (July). Vol. 46. Iss. 7. pp. 484–488. Doi: 10.3103/S0967091216070159.

Full content Study of the effect of complex alloying of high-manganese steel by Ti–Ca–N alloying composition on its microstructure, mechanical and operating properties
Back