Journals →  Chernye Metally →  2017 →  #6 →  Back

Rolling and other metal forming processes
ArticleName Complex for flat steel production in China
ArticleAuthor A. Kern, P. Walter, E. Pfeiffer, H.-J. Tschersich
ArticleAuthorData

thyssenkrupp Steel Europe AG (Duisburg, Germany):

Kern A., Dr. Eng., Prof., Head of Quality Affaird / R&D
Walter P., Senior Engineer / R&D, e-mail: peter.walter1@thyssenkrupp.com
Pfeiffer E., Mag. Econ., Senior Engineer / Quality Dept.
Tschersich H.-J., Mag. Eng., Manager R&D

Abstract

The different methods of material modelling are being continuously developed, and their application possibilities offer large potential. Be it for the reduced product development cycles during the development and the testing of heavy plates, or during the very production process of quarto plates, a fast projection of the mechanical and technological properties is today an indispensable element of the daily work routine. Moreover, the spectrum of applications and the group of software users is markedly enhanced by the integration of our material models in userfriendly software with simultaneous database access. These programs are useful for quality assurance and inspection as well as in the processing of customer inquiries. The main features of the material-model-based simulation programs are listed. By developing and combining as well as interlinking different modeling tools for the complete process routes of steel and heavy plate production (continuous casting – heating – forming – cooling transforming – thermal treatment) new materials, the possible production methods and their use properties can be described realistically.

keywords Simulation, heavy plate, regression analysis, quality, chemical composition, mechanical properties, high-pressure vessels
References

1. Pfeiff er, E.; Kern, A.: Design Res. 2014. Vol. 7. No. 2, p. 147/53.
2. Kaiser, H.-J.; Kern, A.; Grill, R.; Schlosser, H.; Schröter, M.: Stahl u. Eisen. 2008. Vol. 128. No. 4, p. 91/97.
3. Kern, A.; Schriever, U.; Plutniok, V.: Rechnergestützte Ermittlung von Regressionsgleichungen für die Streckgrenze TM-gewalzter und intensivgekühlter Stähle, Techn. Universität Clausthal, 1988 (Master thesis).
4. Kern, A.; Müsgen, B.; Schriever, U.: Prediction of microstructural evolution during cooling after hot rolling of flat products, Proc. 1st Int. Conf. on Modelling of Metal Rolling Processes, London, UK, 21−23 Sept 1993. p. 202/11.
5. Kern, A.; Schriever, U.: Z. Metallkunde. 2000. Vol. 91. No. 10, p. 876/81.
6. Bojasinow, A. I.; Kafarow, W. W.: Optimierungsmethoden in der chemischen Technologie, Verlag Chemie, Weinheim, 1972, p. 550/80 .
7. Binder, K.: Monte Carlo Methods in Statistical Physics, Springer Verlag, Berlin, 1987, p. 9/12.
8. Esser, F.; Esser, B.: Computer — Anwendungen in der Metallurgie, Deutscher Verlag für Grundstoffindustrie, Leipzig, 1990, p. 13/16.
9. Dietrich, A.; Feinle, P.; Kern, A.; Schriever, U.: Auf bereitungstech. — Min. Proc. 2007. Vol. 48. No. 9, p. 12/24.
10. Kern, A.; Gottlieb, J.; Schriever, U.; Steinbeck, G.: High Performance Steels for Pressure Vessels Niobium Bearing Structural Steels, Jansto, S. G., Patel, J. [ed.] by ASM, 2010, p. 415/26.

Language of full-text russian
Full content Buy
Back