ArticleName |
The effect of technological parameters on electrochemical processing of rhenium-containing heat-resistant alloy |
ArticleAuthorData |
Kazakh National Research Technical University named after Kanysh Satpayev, Almaty, Republic of Kazakhstan:
E. G. Baykonurov, PhD student of a Chair “Metallurgical processes, heat engineering and special materials technology”, e-mail: erden_baikonurov@mail.ru G. A. Usoltseva, Associated Professor of a Chair “Metallurgical processes, heat engineering and special materials technology”, e-mail: nota-vesna@yandex.ru
Moscow State University of Fine Chemical Technologies named after M. V. Lomonosov, Moscow, Russia:
O. V. Chernyshova, Assistant Professor of K. A. Bolshakov Chair “Chemistry and technology of rare and scattered elements, nanosized and composite materials”, e-mail: oxcher@mitht.ru D. V. Drobot, Professor of K. A. Bolshakov Chair “Chemistry and technology of rare and scattered elements, nanosized and composite materials”, e-mail: dvdrobot@mail.ru |
Abstract |
The paper proposes and justifies a technological scheme for electrochemical processing of the rhenium-containing heat-resistant ZhS32-VI (ЖС32-ВИ) alloy that contains, % (wt.): 4.0 Re; 9.3 Co; 8.6 W; 0.005 Y; 0.005 Lа; 6.0 Al; 5.0 Cr; 4.0 Tа; 1.6 Nb; 1.1 Mо; 0.16 С; 0.15 B; 0.025 Cе, 60.05 Ni. It further establishes the effect of the electrolyte’s composition on the indicators of electrochemical processing of the alloy in question: power yield, distribution of alloy components among the products of electrolysis, granulometric size of the anode slime. A quantitative separation of the ZhS32-VI alloy components occurs during its anode dissolution in acid electrolytes (the solution is a mixture of nitrogen and hydrochloric acid), conducted in a galvanostatic regime with a current power in the range from 1.0–2.5 A: refractory metals concentrate in anode slime: niobium, tantalum, molybdenum and tungsten, whilst cobalt, rhenium, aluminium, chrome and the basic quantity of nickel partially transfer into the electrolyte. Anode slime is an X-ray amorphous product in which refractory metals — niobium, tantalum, molybdenum and tungsten – concentrate during the processing. The chemical composition of anode slime does not change significantly in the case of the employed electrolytes, % (wt.): 4.8–3.2 Re; 2.5–4.9 Co; 28.4–32.6 W; 1.6–3.2 Al; 4.0–5.8 Cr; 13.2–14.5 Tа; 5.8–6.0 Nb; 3.2–4.8 Mо; 18.5–22.4 Ni. The sizes of anode slime particles depend on the composition of the employed electrolytes and range from 800 to 4500 nm. The cathode deposition, obtained during the research, consisted of nickel, cobalt, aluminium and rhenium. The yield of cathode sediments varies between 34.8% and 45.3%. The research showed that electrochemical processing, conducted in a galvanostatic regime by using acid electrolytes, enables the obtaining of a powdered nickel concentrate with the level of nickel no lower than 79.9% (wt.). |
References |
1. Lutz L. J., Parker S. A., Stephenson J. B. Recycling of contaminated superalloy scrap via electrochemical processing. TMS Annual Meeting. 1993. P. 1211–1220. 2. V. V. Satya Prasad, A. Sambasiva Rao, U. Prakash, V. Ramakrishna Rao, P. Krishna Rao, Krishna M. Gupt. Recycling of Superalloy Scrap through Electro Slag Remelting. ISIJ International. 1996. Vol. 36, No. 12. pp. 1459–1464. DOI: 10.2355/isijinternational.36.1459 3. Rao S. R. Resource Recovery and Recycling from Metallurgical Wastes. Vol. 7. Amsterdame : Elsevier Science, 2006. 580 p. 4. Flow studies for recycling metal commodities in the United States. Ed. S. F. Sibley. Reston, Virginia : US Geological Survey, 2004. 5. Worrell E., Reuter M. A. Handbook of Recycling: State-of-the-art for Practitioners, Analysts, and Scientists. Amsterdame : Elsevier, 2014. 600 p. 6. Palant A. A., Bryukvin V. A., Levin A. M., Levchuk O. M. Complex electrochemical technology of processing of wastes of heat-resistant nickel alloys, containing rhenium, tungsten, tantalum, niobium and other valuable metals. Metally. 2014. No. 1. pp. 25–27. 7. Palant A. A., Bryukvin V. A., Levchuk O. M., Palant A. V., Levin A. M. Method of electrochemical processing of metallic wastes of heat-resistant nickel alloys, containing rhenium. Patent RF, No. 2401312. Applied: 10.10.2010. Bulletin No. 28. 8. Pat. 10155791 DE. Process for electrochemical decomposition of superalloys. Stoller V., Olbrich A., Meese-Marktscheffel J., Mathy W., Erb M., Nietfeld G., Gille G. ; publ. 17.07.2003. 9. Pat. 5776329 US. Method for the decomposition and recovery of metallic constituents from superalloys. Krynitz U., Olbrich A., Kummer W., Schloh M. ; publ. 07.07.1998. 10. Pat. 1312686 EP. Electrochemical dissolution process for disintegrating superalloy scraps. Stoller V., Olbrich A., Meese-Marktscheffel J., Mathy W., Erb M., Nietfeld G., Gille G. ; publ. 21.05.2003. 11. Srivastava R. R., Kim M.-S., Lee J.-C., Jha M. K., Kim B.-S. Resource recycling of superalloys and hydrometallurgical challenges. Journal of Materials Science. 2014. Vol. 49, No. 14. pp. 4671–4686. 12. Shipachev V. A. Some Processing Techniques for Rhenium Isolation and Purification from Refractory Alloys. Khimiya v interesakh ustoychivogo razvitiya. 2012. No. 20. pp. 365–368. 13. Palant A. A., Bryukvin V. A., Levchuk O. M., Levin A. M., Paretskiy V. M. Complex electrochemical processing of metallic rhenium-containing wastes of high-temperature nickel alloy in nitrate electrolytes. Elektrometallurgiya. 2010. No. 7. pp. 29–33. 14. Petrova A. M., Kasikov A. G., Gromov P. B., Kalinnikov V. T. Rhenium extraction from wastes of complex-alloyed heat-resistant nickel-based alloys. Tsvetnye Metally. 2011. No. 11. pp. 39–43. 15. Chernyshova O. V., Chernyshov V. I. Rhenium and platinum extraction from dead-catalysts of oil processing with the use of electrochemical hydrochlorination. Non-ferrous Metals. 2013. No. 2. pp. 30–34. 16. Kablov E. N. Physico-chemical and thechnological peculiarities of producing the thermally stable alloys containing rhenium. Vestnik Moskovskogo universiteta. Seriya 2. Khimiya. 2005. Vol. 46, No. 3. pp. 155–167. 17. Reznik I. D., Ermakov G. P., Shneerson Ya. M. Nickel. In three volumes. Moscow : Nauka i tekhnologii, 2004. 18. Chernyshova O. V., Drobot D. V. Alternatives of electrochemical processing of rhenium-containing heat-resistant alloy. Khimicheskaya tekhnologiya. 2017. No. 1. pp. 36–42. 19. Turyan Ya. I. Redox reactions and potentials in analytical chemistry. Moscow : Khimiya, 1989. 248 p. |