Journals →  Tsvetnye Metally →  2017 →  #11 →  Back

TO THE 85-th ANNIVERSARY OF ACADEMICAL SCIENCE OF THE URALS
ArticleName Co-solubility of aluminium and scandium oxides in molten sodium cryolite
DOI 10.17580/tsm.2017.11.04
ArticleAuthor Rudenko A. V., Kataev A. A., Zakiryanova I. D., Tkacheva O. Yu.
ArticleAuthorData

Institute of High-Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia:

A. V. Rudenko, Post-Graduate Student, e-mail: a.rudenko@ihte.uran.ru
A. A. Kataev, Junior Researcher
I. D. Zakiryanova, Leading Researcher
O. Yu. Tkacheva, Leading Researcher

Abstract

During the electrolytic or metal-thermal obtaining of Al – Sc alloy, the molten sodium cryolite (Na3AlF6) is used as a dissolvent medium, which gives an opportunity to use the scandium oxide as an initial raw material for the second component. The value of Sc2O3 solubility in salt solution is an important characteristics of the process. The co-solubility of Sc2O3 and Al2O3 in the molten sodium cryolite NaF – AlF3 with a cryolite ratio of 2.3 was studied by thermal analysis and Raman spectroscopy. The liquidus temperature of the quazi-binary phase diagrams [(NaF – AlF3) – Sc2O3] – Al2O3 and [(NaF – AlF3) – Al2O3] – Sc2O3 was measured. All phase diagrams have an eutectic minimum, which shifts toward a decrease in the concentration of the added oxide as the concentration of the “fixed” oxide increases. The Sc2O3 solubility in the NaF – AlF3 melt is 4.5 mol.% at 980 оC and depends on the Al2O3 solubility at a certain electrolyte composition and temperature, but at the same time the co-solubility of scandium and aluminum oxides exceeds the solubility of each oxide individually. This phenomenon can be explained by the different mechanism of the Al2O3 and Sc2O3 interaction with the molten sodium cryolite. The Raman spectra of the quenched samples (NaF – AlF3) – Sc2O3 and (NaF – AlF3) – Sc2O3 – Al2O3 revealed that, unlike Al2O3, the chemical dissolution of Sc2O3 proceeds in two stages with the formation of the complex ions ScF63–, Al2OF62– and Sc2OF62–. However, at high concentrations of dissolved alumina, only oxyfluoride complexes of aluminum and scandium were detected in the spectra.

keywords Aluminium, scandium, sodium cryolite, solubility, phase diagram
References

1. Makhov S. V., Moskvitin V. I. Modern technology of obtaining of aluminiumscandium ligature. Tsvetnye Metally. 2010. No. 5. pp. 95–96.
2. Yang Sh., Gao B., Wang Zh., Shi Zh., Ban Y., Kan H., Cao X., Qiu Zh. Preparation of Al – Sc alloys by molten salts electrolysis. Innovations in Electrometallurgy (TMS Annual Meeting). 2007. pp. 54–57.
3. Shtefanyuk Yu., Mann V., Pingin V., Vinogradov D., Zaikov Yu., Tkacheva O., Nikolaev A., Suzdaltsev A. Production of Al – Sc alloy by electrolysis of cryolitescandium oxide melts. Light Metals. 2015. January. pp. 589–593.
4. Moskvitin V. I., Makhov S. V. About the possibility of obtaining of aluminiumscandium ligature in aluminium electrolyzer. Tsvetnye Metally. 1998. No. 7. pp. 43–46.
5. Yatsenko S. P., Skachkov V. M., Yatsenko A. C. Receipt of ligature on basis of aluminium by method of high-temperature exchange reaction in molten salts. V. Injection of technological powders in liguid aluminium. Rasplavy. 2011. No. 4. pp. 41–46.
6. Zaikov Yu., Tkacheva O., Suzdaltsev A., Kataev A., Shtefanyuk Yu., Pingin V., Vinogradov D. Lab scale synthesis of Al – Sc alloys in NaF – AlF3 – Al2O3 – Sc2O3 melt. Advance materials research. 2015. Vol. 1088. pp. 213–216.
7. Napalkov V. I., Makhov S. V. Alloying and modifying of magnesium and aluminium. Moscow : MISIS. 2002. 376 p.
8. Schwellinger Р. Method for the production of an aluminum-scandium master alloy. Patent WO 2006/079353 A1. Alcan Technology & Managements Ltd, Germany ; Publ. 25 Jan. 2005.
9. Tian C., Hu X., Lai Y., Yang S., Te S., Li J. Solubility of Sc2O3 in Na3AlF6 – К3AlF6 – AlF3 melts. Proceedings 6-th International Symposium on High Temperature Metallurgical Processing. TMS, 2015. pp. 105–112.
10. Tkacheva O. Yu., Kataev A. A., Redkin A. A., Rudenko A. V., Dedyukhin A. A., Zaykov Yu. P. Fluxes for producing the aluminum–boron alloys. Rasplavy. 2016. No. 5. pp. 387–396.
11. Skybakmoen Е., Solheim A., Sterten A. Alumina solubility in molten salt systems of interest for aluminum electrolysis and related phase diagram data. Metallurgical and materials Transactions B. 1997. Vol. 28B. pp. 81–86.
12. Fenerty A., Hollingshead E. J. Liquidus curves for aluminum cell electrolyte. 3. Systems cryolite-alumina with aluminum fluoride and calcium fluoride. Journal of The Electrochemical Society. 1960. Vol. 107. pp. 993–997.
13. Pshenichnyy R. N., Omelchuk A. A. Interaction of rare-earth oxides with binary molten mixtures of zirconium and alkali metal fluorides. Zhurnal neorganicheskoy khimii. 2012. Vol. 57, No. 1. pp. 123–127.
14. K. Nakamoto. Infrared and Raman spectra of Inorganic and Coordination Compounds. Moscow : Mir, 1991. 220 p.
15. Auguste F., Tkatcheva O., Mediaas H., Østvold T., Gilbert B. The Dissociation of Fluoroaluminates in FLiNaK and CsF – KF Molten Mixtures: A Raman Spectroscopic and Solubility Study. Inorganic Chemistry. 2003. Vol. 42, No. 20. pp. 6338–6344.
16. Todorov N. D., Abrashev M. V., Marinova V., Kadiyski M., Dimowa L., Faulques E. Raman spectroscopy and lattice dynamical calculations of Sc2O3 single crystals. Physical Review B. Vol. 87. DOI: 10.1103/PhysRevB.87.104301.
17. Brooker M. H., Berg R. W., Barner J. H., Bjerrum N. J. Matrix-isolated Al2OF62– ion in molten and solid LiF/NaF/KF. Inorganic Chemistry. 2000. Vol. 39. pp. 4725-4730.
18. Aleksandrov K. S., Voronov V. N., Vtyurin A. N., Krylov A. S., Molokeev M. S., Pavlovskiy M. S., Goryaynov S. V., Likhacheva A. N., Ancharov A. I. Pressure-induced phase transition in the cubic ScF3 crystal. Fizika tverdogo tela. 2009. Vol. 51, No. 4. pp. 764–770.
19. Hu X, Qu J., Gao B., Shi Z., Liu F., Wang Z. Raman spectroscopy and ionic structure of Na3AlF6 – Al2O3 melts. Transactions of Nonferrous Metals Society of China. 2011. Vol. 21. pp. 402–406.

Language of full-text russian
Full content Buy
Back