Journals →  Tsvetnye Metally →  2017 →  #12 →  Back

COMPOSITES AND MULTIPURPOSE COATINGS
ArticleName Synthesis of very high-temperature ceramics ZrB2 – SiC in combustion mode
DOI 10.17580/tsm.2017.12.09
ArticleAuthor Iatsyuk I. V., Pogozhev Yu. S., Novikov A. V.
ArticleAuthorData

National University of Science and Technology “MISiS”, Moscow, Russia:
I. V. Iatsyuk, Post-Graduate Student of a Chair “Powder Metallurgy and Functional Coatings”, e-mail: ivansvoy@mail.ru

 

Scientific and Education Center of Self-Spreading High-Temperature Synthesis “MISiS – ISMAN”, Moscow, Russia:
Yu. S. Pogozhev, Senior Researcher of the Scientific and Education Center, e-mail: yspogozhev@mail.ru
A. V. Novikov, Senior Researcher of the Scientific and Education Center, e-mail: avnovikov@inbox.ru

Abstract

The work is devoted to obtaining high-temperature ceramic composition ZrB2 — 25% SiC by the self-propagating high-temperature synthesis (SHS). In order to increase the heat release during the combustion of the elemental reaction mixture, the two-stage scheme of its preparation with preliminary mechanical activation (MA) of the Si + C mixture in a planetary centrifugal mill (PCM) and subsequent admixing of Zr and B powders in the ball mill (BM) was used. The effect of the initial temperature of the SHS process (T0) on the main combustion parameters is determined. The Tc (T0) and Uc (T0) dependencies are linear in nature, indicating that the stages of chemical reactions of formation of ZrB2 diboride and SiC carbide are unchanged. The value of the effective activation energy of the combustion process Eeff turned out to be small, which is characteristic for systems in which the processes of liquid-phase interaction exert a determining influence on the kinetics of combustion. The results of dynamic X-ray diffraction showed sequential formation of phase constituents when, first of all, ZrB2 phase forms from Zr –Si melt saturated with boron, and SiC is formed with an insignificant temporal separation after 0.5 s due to the interaction of the Si melt with the carbon black particles. The SHS method has been successfully used to produce both compact and powder ceramics. In both cases the structure of the products of synthesis is two-phase and consists of the homogeneously distributed in volume ZrB2 and SiC grains, the size of which is commensurable and varies within the range of 1–5 μm. The powder particles have a round and polyhedral form. The obtained SHS ceramics possesses low residual porosity, high hardness, elastic modulus, elastic recovery, and also thermal conductivity and can be used as a structural material for high-temperature applications.

keywords Ceramics, combustion kinetics, zirconium diboride, silicon carbide, composite powders, hardness, thermal conductivity
References

1. Fahrenholtz W. G., Hilmas G. E., Talmy I. G., Zaykoski J. A. Refractory diborides of zirconium and hafnium. Journal of the American Ceramic Society. 2007. Soc. 90 (5). pp. 1347–1364.
2. Licheri R., Orrù R., Musa C., Cao G. Combination of SHS and SPS techniques for fabrication of fully dense ZrB2 – ZrC – SiC composites. Materials Letters. 62 (3). 2008. pp. 432–435.
3. Neuman E. W., Hilmas G. E., Fahrenholtz W. G. Mechanical behavior of zirconium diboride-silicon carbide-boron carbide ceramics up to 2200 oC. Journal of the European Ceramic Society. 2015. Vol. 35. pp. 463–476.
4. Wuchina E., Opila E., Opeka M., Fahrenholtz W., Talmy I. UHTCs: Ultra-High Temperature Ceramic Materials for Extreme Environment Applications. Interface. 2007. 16 (4). pp. 30–36.
5. Pastor H. Metallic borides: preparation of solid bodies — sintering methods and properties of solid bodies, In: Matkovich VI, editor, Boron and Refractory Borides, New York : Springer-Verlag, 1977. pp. 454–493.
6. Wu W. W., Zhang G. J., Kan Y. M., Wang P. L., Vanmeense K., Vleugels J., Vander Biest O. Synthesis and microstructural features of ZrB2 – SiC-based composites by reactive spark plasma sintering and reactive hot pressing. Scripta Materialia. 2007. Vol. 57. pp. 317–320.
7. Monteverde F., Scatteia L. Resistance to thermal shock and to oxidation of metal diborides-SiC ceramics for aerospace application. Journal of the American Ceramic Society. 2007. Vol. 90 (4). pp. 1130–1138.
8. Monteverde F. Beneficial effects of an ultra-fine a-SiC incorporation on the sinterability and mechanical properties of ZrB2. Applied Physics A : Materials Science and Processing. 2006. Vol. 82. pp. 329–337.
9. Abraham T. Powder Market Update: Nanoceramic Applications Emerge. American Ceramic Society Bulletin. 2004. Vol. 83, No. 8. p. 23.
10. Zhou P., Hu P., Zhang X., Han W., Fan Y. R-curve behavior of laminated ZrB2 – SiC ceramic with strong interfaces. International Journal of Refractory Metals and Hard Materials. 2015. Vol. 52. pp. 12–16.
11. Sciti D., Guicciardi S., Bellosi A. Properties of apressureless-sintered ZrB2 – MoSi2 ceramic composite. Journal of the American Ceramic Society. 2006. 7. pp. 2320–2322.
12. Iatsyuk I. V., Pogozhev Yu. S., Levashov E. A., Novikov A. V., Kochetov N. A., Kovalev D. Yu. Features of production and high-temperature oxidation of SHS-ceramics based on zirconium boride and zirconium silicide. Izvetsiya vuzov. Poroshkovaya metallurgiya i funktsionalnye pokrytiya. 2017. No. 1. pp. 29–41.
13. Silvestroni L., Landi E., Bejtka K., Chiodoni A., Sciti D. Oxidation behavior and kinetics of ZrB2 containing SiC chopped fibers. Journal of the European Ceramic Society. 2015. Vol. 35. pp. 4377–4387.
14. Silvestroni L., Meriggi G., Sciti D. Oxidation behavior of ZrB2 composites doped with various transition metal silicides. Corrosion Science. 2014. Vol. 83. pp. 281–291.
15. Makarov A. V., Bagarat'yan N. V., Zbezhneva S. G., Aleshko-Ozhevska ya L. A., Georgobiani T. P. Ionisation and fragmentation of B2O2 and BO molecules at the electronic bump. Vestnik Moskovskogo Universiteta. Seriya 2, Khimiya. 2000. Vol. 41, No. 4. pp. 227–230.
16. Eremina E. N., Kurbatkina V. V., Levashov E. A., Rogachev A. S., Kochetov N. A. Obtaining the composite MoB material by means of force SHS compacting with preliminary mechanical activation of Mo – 10 % B mixture. Chemistry for Sustainable Development. 2005. Vol. 13. pp. 197–204.
17. Marschall J., Pejakovic D., Fahrenholtz W. G., Hilmas G. E., Panerai F., Chazot O. Temperature Jump Phenomenon During Plasmatron Testing of ZrB2 – SiC Ultrahigh-Temperature Ceramics. Journal of Thermophysics and Heat Transfer. 2012. Vol. 26, No. 4. pp. 559–572.
18. Parthasarathy T. A., Rapp R. A., Opeka M., Cinibulk M. K. Modeling Oxidation Kinetics of SiC-Containing Refractory Diborides. Journal of the American Ceramic Society. 2012. Vol. 95, No. 1. pp. 338–349.
19. Lavrenko V. A., Dayatel V. D., Lugovaya E. S. Interaction of materials ZrB2 – ZrSi2 system with oxygen at high temperature. Poroshkovaya metallurgiya. 1982. 6 : 56–8.
20. Chamberlain A. L., Fahrenholtz W. G., Hilmas G. E., Ellerby D. E. Highstrength zirconium diboride-based ceramics. Journal of the American Ceramic Society. 2004. Vol. 87 (6). pp. 1170–1172.
21. Monteverde F. The thermal stability in air of hot-pressed diboride matrix composites for uses at ultra-high temperatures. Corrosion Science. 2005. Vol. 47. pp. 2020–2033.
22. Pogozhev Yu. S., Iatsyuk I. V., Potanin A. Yu., Levashov E. A., Novikov A. V., Kochetov N. A., Kovalev D. Yu. The kinetics and mechanism of combusted Zr – B – Si mixtures and structural features of ceramics based on zirconium boride and silicide. Ceramics International. 2016. Vol. 42. pp. 16758–16765.
23. Levashov E. A., Pogozhev Yu. S., Potanin A. Yu., Kochetov N. A., Kovalev D. Yu., Shvyndina N. V., Sviridova T. A. Self-propagating hightemperature synthesis of advanced ceramics in the Mo – Si – B system: Kinetics and mechanism of combustion and structure formation. Ceramics International. 2014. Vol. 40. pp. 6541–6552.
24. Levashov E. A., Rogachev A. S., Kurbatkina V. V., Maksimov M., Yukhvid V. I. Promissory Materials and Processes of Self-Propagating High-Temperature Synthesis: A Tutorial. Moscow : Izdatelstvo MISIS, 2011.
25. Rogachev A. S., Mukasyan A. S. Combustion for Materials Synthesis. New York : Taylor and Francis, 2015.
26. Wu W. W., Zhang G. J., Kan Y. M., Wang P. L. Combustion synthesis of ZrB2 – SiC composite powders ignited in air. Materials Letters. 2009. Vol. 63. pp. 1422–1424.
27. Hu P., Gui K., Hong W., Zhang X. Preparation of ZrB2 – SiC ceramics by single-step and optimized two-step hot pressing using nanosized ZrB2 powders. Materials Letters. 2017. Vol. 200. pp. 14–17.
28. Inouea R., Araia Yu., Kubota Yu. Oxidation behaviors of ZrB2 – SiC binary composites above 2000 oC. Ceramics International. 2017. Vol. 43. pp. 8081–8088.
29. Borovinskaya I. P., Gromov A. A., Levashov E. A., Maksimov Y. M., Mukasyan A. S., Rogachev A. S. Concise encyclopedia of self-propagating high-temperature synthesis. History, Theory, Technology and Products. 2017. Elsevier Inc.
30. Oliver W. C., Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research. 1992. pp. 1564–1583.
31. Pogozhev Yu. S., Potanin A. Yu., Levashov E. A., Kovalev D. Yu. The features of combustion and structure formation of ceramic materials in the Cr – Al – Si – B system. Ceramics International. 2014. Vol. 40. pp. 16299–16308.
32. Zimmermann J. W., Hilmas G. E., Fahrenholtz W. G., Dinwiddie R. B., Porter W. D., Wang H. Thermophysical Properties of ZrB2 and ZrB2 – SiC Ceramics. Journal of the American Ceramic Society. 2008. Vol. 91(5). pp. 1405–1411.

Language of full-text russian
Full content Buy
Back