Journals →  Tsvetnye Metally →  2018 →  #1 →  Back

MATERIALS SCIENCE
ArticleName The influence of hardening and ageing regimes on microstructure and properties of Cu – Cr – Zr alloy, used for the construction elements of the ITER blanket
DOI 10.17580/tsm.2018.01.11
ArticleAuthor Suvorova A. A., Danilov I. V., Kalinin G. M., Korostelev A. B.
ArticleAuthorData

JSC “NIKIET”, Moscow, Russia:

A. A. Suvorova, Second Category Engineer, e-mail: suvorova@nikiet.ru
I. V. Danilov, Deputy Chief Designer on Nuclear and Physical Systems of ITER, Head of Department, e-mail: danilov@nikiet.ru
G. M. Kalinin, Chief Researcher, e-mail: gmk@nikiet.ru
A. B. Korostelev, Professor, Head of Department, e-mail: korostelev@nikiet.ru

Abstract

The Cu – Cr – Zr alloy in the state after hardening and ageing was proposed as the heat-conducting layer in the construction of panels of the first wall and connectors of the ITER blanket. According to ITER specifications, hardening is conducted at the temperature of 980 оC and holding for 30 minutes, and the subsequent cooling in water. Ageing is conducted at the temperature of 475 оC and holding for 3 hours. As regards the construction elements, operating in different conditions, it is necessary to correct the metrical processing regimes in order to enhance the alloy’s exploitation properties. The actual parameters of the metrical processing may differ from the recommended regime as a result of metrical impact at production of the construction elements. In this respect, the alloy’s properties may significantly differ from the values that are stated in ITER’s documentation. Consequently, it is of a practical importance to research the influence of various metrical-processing regimes (including the ageing parameters) on the Cu – Cr – Zr alloy‘s properties. The given study is dedicated to researching the influence of heating at the temperatures of 350–750 оC and the period of ageing from 5 to 10 minutes on the physicо-mechanical properties and the structure of the Cu – Cr – Zr alloy.

keywords Copper alloys, bronze, thermal processing, electric properties, thermonuclear materials, mechanical properties, optical microscopy
References

 

1. Leshukov A. Yu., Dragunov Yu. G., Strebkov Yu. S., Kirillov S. Yu., Maka rov S.V. et al. Overview of JSC “NIKIET” activity on ITER Procurement Arrangement. Fusion Engineering and Design. 2016. Vol. 109–111. pp. 61–72.
2. Khomiakov S., Poddubnyi I., Kolganov V., Zhmakin A., Parshutin E., Danilov I., Strebkov Yu. et al. ITER blanket module connectors. Design, analysis and testing for procurement arrangement. Fusion Engineering and Design. 2016. Vol. 109–111. pp. 261–266.
3. Poddubnyi I., Khomiakov S., Kolganov V., Sadakov S., Calcagno B., Chappuis Ph. et al. Electrical connectors for blanket modules in ITER. Fusion Engineering and Design. 2014. Vol. 89. pp. 1336–1340.
4. Sannazzaro G., Barabash V., Kang S. C., Fernandez E., Guirao J. Development of design Criteria for ITER In-vessel Components. Fusion Engineering and Design. 2013. Vol. 88, Iss. 9–10. pp. 2138–2141.
5. Kalinin G. M., Fabritziev S. A., Singh B. N., Tahtinen S., Zinkle S. J. Specification of properties and design allowable for copper alloys used in HHF components of ITER. Journal of Nuclear Materials. 2002. Vol. 307–311, Part 1. pp. 668–672.
6. Nikolaev A. K., Kostin S. A. Copper and heat-resistant copper alloys. Moscow : DPK Press, 2012. 715 p.
7. Nikolaev A. K., Novikov A. I., Rozenberg V. M. Chromium bronzes. Moscow : Metallurgiya, 1983. 177 p.
8. Kalinin G. M., Ivanov A. D., Obushev A.N. et al. Ageing effect on the properties of CuCrZr alloy used for the ITER HHF components. Journal of Nuclear Materials. 2007. Vol. 367–370, Part B. pp. 920–924.
9. Fabritsiev S. A., Pokrovsky A. S. et al. The effect of neutron irradiation on the mechanical properties of presipitation hardened copper alloys. Journal of Nuclear Materials. 1997. Vol. 249. pp. 250–258.
10. Batra I. S., Dey G. K., Kulkarni U. D., Banerjee S. Microstructura and properties of a Cu – Cr – Zr alloy. Journal of Nuclear Materials. 2001. Vol. 299. pp. 91–100.
11. Matyunin V. M. Operative diagnostics of mechanical properties of structure materials. Moscow : Izdatelskiy dom MEI, 2006. 214 p.
12. Nagata K., Nishikawa S. Rep. Ins. Ind. Sci. University of Tokyo. 1975. Vol. 24 (4). pp. 115–168.
13. Purcek G., Yanar H., Demirtas M., Alemdag Y., Shangina D. V., Dobatkin S. V. Optimization of strength, ductility and electrical conductivity of Cu – Cr – Zr alloy by combining multi-route ECAP and aging. Materials Science & Engineering A. 2016. Vol. 649. pp. 114–122.
14. Shangina D. V., Bochvar N. R., Gorshenkov M. V., Yanar H., Purcek G., Dobatkin S. V. Influence of microalloying with zirconium on the structure and properties of Cu – Cr alloy after high pressure torsion. Materials Science & Engineering A. 2016. Vol. 650. pp. 63–66.
15. Purcek G., Yanar H., Saray O., Karaman I., Maier H. J. Effect of precipitation on mechanical and wear properties of ultrafine-grained Cu – Cr – Zr alloy. Wear. 2014. Vol. 311. pp. 149–158.
16. Lyakishev N. P. Constitution diagrams for double metallic systems : reference book. Vol. 1, 2, 3. Moscow : Mashinostroenie, 1996. 1238 p.

 

Language of full-text russian
Full content Buy
Back