ArticleName |
Thermodynamic estimation of the probability of chemical reactions during alkaline decomposition of eudialyte concentrate |
Abstract |
Eudialyte raw material from Lovozero massif is a promising source of rare earth and zirconium raw materials in Russia, characterized by a high (2–10 times) level of moderate and severe groups of REE as compared to loparite and zirconium (up to 13% ZrO2), hafnium, tantalum, niobium and titanium. Eudialyte is easily decomposable in acids, whilst a large amount of silicon (40–60% SiO2) in eudialyte compositions leads to formation of amorphous silicon dioxide. It precipitates in the form of a poorly filtering gel which adsorbs REЕ and zirconium ions, thus reducing the level of their extraction into solution. In this regard, it is promising to develop alkaline decomposition of eudialyte concentrate, which enables extraction of silicon into solution, to obtain a concentrate, enriched in REM and PM, and suitable for subsequent efficient processing by using acid leaching or chlorination. To do this, it was first required — by using thermodynamic calculations — to determine which of the phases, formed during the process of alkaline composition and contain silicon, enable its most complete and selective extraction into an alkaline solution. A thermodynamic analysis on probability of alkaline decomposition of eudalyte concentrate phases — eudalyte with formation of NaZrO3 and zirconosilicates (Na2ZrSiO5, Na2ZrSi2O7, Na4Zr2Si3O12, Na14Zr2Si10O31, Na4ZrSi3O10, Na4Zr2Si5O16, Na2ZrSi4O11, Na2ZrSi6O18) and also the accompanying minerals (albite, anorthite, nepheline, aegirine) was carried out in the temperature range of 298–423 K. The influence of molar ratios of Si/Zr, Na/Si and Na/Zr zirconosilicate on thermodynamic probability of their formation was determined. The extraction of silicon into solution during alkaline decomposition of eudialyte concentrate was estimated. The maximum extraction of silicon into solution (72.74%) is possible only when the Na2ZrO3 phase is formed. However, the formation of this phase is thermodynamically improbable. Theoretically, the level of extraction of silicon into eudialyte concentrate solution equals 23.56–27.81; 14.84–18.83; 41.54–45.78 and 50.52–54.77% during formation of thermodynamically most probable phases Na14Zr2Si10O31, Na8ZrSi6O18, Na4ZrSi3O10 and Na2ZrSi2O7, respectively. |
References |
1. Zakharov V. I., Voskoboynikov N. B., Skiba G. S., Solovev A. V., Mayorov D. V., Matveev V. A. Development of hydrochloric acid technology of complex processing of eudialyte. Zapiski Gornogo instituta. 2005. Vol. 165. pp. 83–85. 2. Shatalov V. V., Nikonov V. I., Kotsar M. L., Boldyrev V. A., Nikolskiy A. L. Raw material provision of nuclear power engineering of Russia with zirconium and hafnium up to 2030. Available at: https://helion-ltd.ru/zirconium-andhafnium (accessed: 22.12.2017). 3. Review of market of rare-earth materials (metals) in the CIS countries and in the world. Moscow, 2016. Available at: http://infomine.ru/files/catalog/48/file_48.pdf (accessed: 11.04.2017). 4. Litvinova T. E. Obtaining of compounds of individual rare-earth metals and passing products during the processing of low-quality rare-metal raw materials : Dissertation … of Doctor of Engineering Sciences. Saint Petersburg, 2014. 318 p. 5. Mikhaylov Yu. M. Rare-earth metals as a basis of obtaining of prospective materials, required for development of armory and military equipment. Available at: http://federalbook.ru/files/OPK/Soderjanie/OPK-10/III/Mihaylov.pdf (accessed: 11.04.2017). 6. Sergeev I. B., Ponomarenko T. V. Incentives for creation the competitive rare-earth industry in Russia in the context of global market competition. Zapiski Gornogo instituta. 2015. Vol. 211. pp. 104–116. 7. Subprogram 15. Development of industry of rare and rare-earth metals. Available at: http://sudact.ru/law/rasporiazhenie-pravitelstva-rf-ot-29082013-n-1535-r/gosudarstvennaia-programma-rossiiskoi-federatsii-razvitie/podprogramma-15 (accessed: 11.04.2017). 8. Available at: http://static.government.ru/media/files/1gqVAlrW8Nw.pdf (accessed: 11.04.2017). 9. Melentev G. Rare earth priorities of Russia. Redkie zemli. Available at: http://rareearth.ru/ru/pub/20150420/01578.html (accessed: 11.04.2017). 10. Dibrov I. A., Chirkst D. E., Litvinova T. E. Thermodynamic investigation of acid opening of eudialite concentrate. Zhurnal prikladnoy khimii. 1996. Vol. 69, No. 5. pp. 727–730. 11. Karzhavin V. K. Thermodynamic properties of eudialite. Geokhimiya. 1993. No. 11. pp. 1600–1604. 12. Chizhevskaya S. V., Povetkina M. V., Chekmarev A. M., Avvakumov E. G. Influence of mechanical activation on the process of decomposition of zirconium silicates using mineral acids. Khimiya v interesakh ustoychivogo razvitiya. 1998. Vol. 6, No. 3. pp. 199–205. 13. Govorukhina O. A., Masloboev V. A. Interaction of eudyalite with NaOH and KOH solutions in hydrothermal conditions. Chemical and metallurgical processing of mineral and technogenic raw materials of the Kola Peninsula. Apatity : Kolskiy filial AN SSSR, 1988. pp. 29, 30. 14. Rastsvetaeva R. K., Chukanov N. V., Aksenov S. M. Eudialyte group minerals: crystal chemistry, properties, genesis. Nizhniy Novgorod : Nizhegorodskiy gosudarstvennyy institut imeni N. I. Lobachevskogo, 2012. 229 p. 15. Karzhavin V. K. Thermodynamic values of chemical elements and compounds. Examples of their practical application. Apatity : Izdatelstvo Kolskogo nauchnogo tsentra RAN, 2011. 160 p. 16. Lidin R. A., Andreeva L. L., Molochko V. A. Constants of inorganic substances : reference book. Moscow : Drofa, 2008. 551 p. 17. Nekhamkin L. G. Metallurgy of zirconium and hafnium. Moscow : Metallurgiya, 1979. 208 p. 18. Alpen U., Bell M. F., Höfer H. H. Ionic conductivity in Na4ZrSi3O10. Solid State Ionics. 1982. Vol. 7, No. 4. pp. 345–348. 19. Ilyushin G. D. Phase Relation in the Na2CO3 – ZrO2 – H2O System at 0.1 and 0.05 GPa and 450 oC. Inorganic Materials. 2002. Vol. 38, No. 12. pp. 1249– 1257. 20. Ilyushin G. D. Hydrothermal crystallization of Na2ZrSi4O11, Na2ZrSi2O7, Na4Zr2Si3O12 in the system Na2CO3 – ZrO2 – SiO2 – H2O at 500 oC and 0.1 GPa. Neorganicheskie materialy. 2004. Vol. 40, No. 8. pp. 986–992. 21. Zolotarev A. A. Crystal chemistry of minerals of lovozerite and labuntsovite : thesis of inauguration of Dissertation … of Candidate of Geological and Mineralogical Sciences. Saint Petersburg, 2007. 20 p. 22. Zuev V. V. Dependence of formation enthalpy from complex crystal oxides. Geokhimiya. 1986. No. 8. pp. 1160–1169. 23. Kulikov B. F., Zuev V. V., Vaynshenker I. A., Mitenkov G. A. Mineralogical reference book of dresser technologist. Leningrad : Nedra, 1985. 264 p. 24. Brown P. L., Curti E., Grambow B. Chemical thermodynamics of zirconium. The Nuclear Energy Agency. Available at: http://oecd-nea.org/dbtdb/pubs/vol8-zirconium.pdf (accessed: 11.04.2017). 25. Thermodynamic properties of Na14Zr2Si10O31. “Khimik” website. Available at: http://xumuk.ru/tdsv/24261.html (accessed: 11.04.2017). 26. Glasser L., Jenkins D. B. H. Predictive thermodynamics for ionic solids and liquids. Physical Chemistry Chemical Physics. 2016. Vol. 18. pp. 21226–21240. 27. Urusov V. S. Energetic crystallochemistry. Moscow : Nauka, 1975. 335 p. 28. Kaftaeva M. V., Rakhimbaev I. Sh., Sharapov O. N. Thermodynamic calculation of comparative hydration activity of cilicate components of gas concretes of steam-cured hardening. Sovremennye problemy nauki i obrazovaniya. 2014. No. 1. Available at: https://www.science-education.ru/ru/article/view?id=11593 (accessed: 14.02.2017). 29. Huijgen W. J. J., Comans R. N. J. Carbon dioxide sequestration by mineral carbonation. Literature Review Update 2003–2004. Petten, Netherlands : Energy research Centre of the Netherlands, 2005. 30. Kotelnikov A. R., Suk N. I., Kotelnikova Z. A. Tracer minerals of the composition of fluide (experimental investigation). Fluide mode of endogenous processes of continental lithosphere: Materials of All-Russian meeting (6–9 October 2015). Irkutsk : Institut zemnoy kory SO RAN, 2015. 205 p. 31. Byrappa K., Masahiro Yoshimura. Handbook of Hydrothermal Technology. 2nd edition. Amsterdam : Elsevier, 2013. 796 p. 32. Kotelnikov A. R., Suk N. I., Kotelnikova Z. A., Akhmedzhanova G. M., Kovalskiy A. M. Stability of ussingite in hydrothermal conditions. Alkaline magmatism of Earth and its ore bearing capacity : materials of International meeting (CIS countries). Donetsk, 10–16 September 2007. Kiev, 2007. pp. 122–125. 33. Ye Z., Zhao X., Li S. D., Wu S. Q., Wu P., Nguyen M. C., Guo J. H., Mi J. X., Gong Z. L., Zhu Z. Z., Yang Y., Wang C. Z., Ho K. M. Robust diamond-like Fe–Si network in the zero-strain NaxFeSiO4 Cathode. Electrochimica Acta. 2016. Vol. 212. pp. 934–940. 34. Gatta G. D., Lotti G. P. Cancrinite-group minerals: Crystal-chemical description and properties under non-ambient conditions — A Review. American Mineralogist. 2016. Vol. 101. pp. 253–265. 35. Bulakh A. G., Bulakh G. K. Physical and chemical properties of minerals and components of hydrothermal solutions. Leningrad : Nedra, 1978. 167 p. 36. Valero А., Vieillard P. Method 10 used for the estimation of the Gibbs free energy and Enthalpy of chemical substances. Available at: http://exergoecology.com/excalc/Meth/Method10.pdf (accessed: 11.04.2017). 37. M. Jagannadha Rao, B. Gopal Krishna. Naturally Engineered Analcime for Water Treatment Process and its Calorimetric Properties. International Journal of Science and Research. Special Issue NCKITE-2015. 2015. pp. 161–166. |